<div class="csl-bib-body">
<div class="csl-entry">Oberauner, J. (2025). <i>Dynamic Power Management in Edge AI: A Sustainable Self-Adaptive Approach</i> [Diploma Thesis, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2025.122574</div>
</div>
-
dc.identifier.uri
https://doi.org/10.34726/hss.2025.122574
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/224637
-
dc.description
Arbeit an der Bibliothek noch nicht eingelangt - Daten nicht geprüft
-
dc.description.abstract
The rapidly growing deployment of Edge AI devices performing high-demand tasks, such as real-time object detection, creates a critical challenge: balancing high performance (maintaining a target confidence) against the severe constraints of intermittent power supply from solar energy harvesting. This thesis addresses the necessity for a dynamic policy that can effectively manage this dual-objective trade-off over long operational horizons. The research establishes an empirical foundation via a parameter study conducted on Raspberry Pi hardware, quantifying the stochastic relationship between configuration parameters (model variant, resolution, frame rate) and actual power consumption/detection confidence, which revealed median shifts of up to 1.37 W in power consumption and up to 26 percentage points in detection confidence between different operational configurations. This data informed the construction of a custom Reinforcement Learning (RL) environment that utilizes Kernel Density Estimation (KDE) to model hardware stochastically and physics-based models for solar dynamics. To solve the dual-objective problem of maximizing performance while satisfying the long-term survival goals, a Proximal Policy Optimization (PPO) agent was trained within a Constrained Optimization framework. The agent's policy was rigorously evaluated over 24-hour and 48-hour cycles across six dynamic scenarios against static and random baselines. The results confirm that the PPO agent successfully learned an adaptive strategy: it consistently manages the trade-off better than non-learning baselines, strategically scaling its resource use based on real-time energy context. Quantitative analysis showed that the PPO agent survived up to 1.5 hours longer than the more power-hungry baselines while achieving at least 40 percentage points more SLA satisfaction than the least power-hungry static policy. This work provides a validated, data-driven approach for sustainable resource management in energy-constrained Edge AI systems.
en
dc.language
English
-
dc.language.iso
en
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
Edge AI
en
dc.subject
Energy Harvesting
en
dc.subject
Proximal Policy Optimization
en
dc.subject
Resource Management
en
dc.subject
Reinforcement Learning
en
dc.subject
Object Detection
en
dc.subject
Solar Power
en
dc.subject
Sustainability
en
dc.title
Dynamic Power Management in Edge AI: A Sustainable Self-Adaptive Approach
en
dc.type
Thesis
en
dc.type
Hochschulschrift
de
dc.rights.license
In Copyright
en
dc.rights.license
Urheberrechtsschutz
de
dc.identifier.doi
10.34726/hss.2025.122574
-
dc.contributor.affiliation
TU Wien, Österreich
-
dc.rights.holder
Julia Oberauner
-
dc.publisher.place
Wien
-
tuw.version
vor
-
tuw.thesisinformation
Technische Universität Wien
-
dc.contributor.assistant
Tundo, Alessandro
-
tuw.publication.orgunit
E191 - Institut für Computer Engineering
-
dc.type.qualificationlevel
Diploma
-
dc.identifier.libraryid
AC17749297
-
dc.description.numberOfPages
61
-
dc.thesistype
Diplomarbeit
de
dc.thesistype
Diploma Thesis
en
dc.rights.identifier
In Copyright
en
dc.rights.identifier
Urheberrechtsschutz
de
tuw.advisor.staffStatus
staff
-
tuw.assistant.staffStatus
staff
-
tuw.advisor.orcid
0000-0001-7424-0208
-
tuw.assistant.orcid
0000-0001-8840-8948
-
item.cerifentitytype
Publications
-
item.openaccessfulltext
Open Access
-
item.languageiso639-1
en
-
item.fulltext
with Fulltext
-
item.openairetype
master thesis
-
item.grantfulltext
open
-
item.mimetype
application/pdf
-
item.openairecristype
http://purl.org/coar/resource_type/c_bdcc
-
crisitem.author.dept
E194 - Institut für Information Systems Engineering