<div class="csl-bib-body">
<div class="csl-entry">Rohshap, S., Ishida, H., Bippus, F., Kauch, A. K., Held, K., Shinaoka, H., & Wallerberger, M. (2025). <i>Diagnosing phase transitions through time scale entanglement</i>. arXiv. https://doi.org/10.48550/arXiv.2507.11276</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/224754
-
dc.description.abstract
Spatial entanglement of wave functions has matured into an enthralling and very active research area. Here, we unearth a completely different kind of entanglement, the entanglement between different time scales. This is feasible through quantics tensor train diagnostics (QTTD), wherein the bond dimension for an -particle correlation function allows diagnosing the temporal entanglement. As examples, we study time-scale entanglement of the Hubbard dimer, the four-site Hubbard ring with and without next-nearest neighbor hopping and the single-impurity Anderson model. Besides introducing the QTTD method, our major finding is that the time-scale entanglement is generically maximal at phase transitions and crossovers. This is independent of the correlation function studied. Thus, QTTD is a universal tool for detecting quantum phase transitions, ground state crossings in finite systems, and thermal crossovers.
en
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.language.iso
en
-
dc.subject
quantics tensor trains
en
dc.subject
Phase transitions
en
dc.subject
time scale entanglement
en
dc.title
Diagnosing phase transitions through time scale entanglement
en
dc.type
Preprint
en
dc.type
Preprint
de
dc.identifier.arxiv
2507.11276
-
dc.contributor.affiliation
Saitama University, Japan
-
dc.relation.grantno
P 36332-N
-
dc.relation.grantno
V 1018-N
-
tuw.project.title
Sparse modeling for 2P response and parquet equations
-
tuw.project.title
Nonlocal correlations in nonequilibrium: parquet equations