<div class="csl-bib-body">
<div class="csl-entry">Schlutzenberg, F. S. (2024). <i>Ladder mice</i>. arXiv. https://doi.org/10.48550/arXiv.2406.06289</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/224760
-
dc.description.abstract
Assume ZF + AD + V=L(ℝ). We prove some "mouse set" theorems, for definability over J_α(ℝ) where [α,α] is a projective-like gap (of L(ℝ)) and α is either a successor ordinal or has countable cofinality, but α ≠ β+1 where β ends a strong gap. For such ordinals α and integers n ≥ 1, we show that there is a mouse M with ℝ∩M=OD_{αn}.
The proof involves an analysis of ladder mice and their generalizations to J_α(ℝ). This analysis is related to earlier work of Rudominer, Woodin and Steel on ladder mice. However, it also yields a new proof of the mouse set theorem even at the least point where ladder mice arise - one which avoids the stationary tower. The analysis also yields a corresponding "anti-correctness" result on a cone, generalizing facts familiar in the projective hierarchy; for example, that (Π^1_3)^V↾M_1 truth is (Σ^1_3)^{M_1}-definable and (Σ^1_3)^{M_1} truth is (Π^1_3)^V↾M_1-definable.
We also define and study versions of ladder mice on a cone at the end of weak gap, and at the successor of the end of a strong gap, and an anti-correctness result on a cone there.
en
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.language.iso
en
-
dc.subject
ladder mouse
en
dc.subject
ordinal definability
en
dc.subject
L(R)
en
dc.subject
gap
en
dc.subject
scale
en
dc.subject
stationary tower
en
dc.subject
correctness
en
dc.subject
anti-correctness
en
dc.title
Ladder mice
en
dc.type
Preprint
en
dc.type
Preprint
de
dc.identifier.arxiv
2406.06289
-
dc.relation.grantno
Y1498
-
tuw.project.title
Determiniertheit und Woodin Limes von Woodin Kardinalzahlen
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E104-08 - Forschungsbereich Mengenlehre
-
tuw.publisher.doi
10.48550/arXiv.2406.06289
-
dc.description.numberOfPages
27
-
tuw.publisher.server
arXiv
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
100
-
item.openairetype
preprint
-
item.openairecristype
http://purl.org/coar/resource_type/c_816b
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
crisitem.author.dept
E104-08 - Forschungsbereich Mengenlehre
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie