<div class="csl-bib-body">
<div class="csl-entry">Breit, A., Revenko, A., Mireles, V., Llugiqi, M., Ekaputra, F. J., Waltersdorfer, L., Paulheim, H., & Sabou, M. (2025). Analysing Objectives of Auxiliary Inputs in Semantic Web Machine Learning Systems. In <i>Handbook on Neurosymbolic AI and Knowledge Graphs</i> (Vol. 400, pp. 900–923). IOS Press. https://doi.org/10.3233/FAIA250238</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/224779
-
dc.description.abstract
With the increasing popularity of neuro-symbolic systems, the number of systems incorporating both symbolic knowledge and statistical machine learning models is on the rise, leading to a wide variety of system architectures. Authors have different rationales behind their architectural decisions to include certain components into their processing flows, however, these objectives have not been thoroughly investigated. In this chapter, we examine the objectives targeting quality attributes of systems that combine symbolic knowledge represented by Semantic Web Technologies with machine learning approaches, known as SWeML systems. Building on top of the previously introduced SWeML classification system, we conduct a comprehensive analysis of the objectives for adding auxiliary inputs to these systems, i.e., inputs that are not needed to fulfil the system’s primary purpose, but to enhance its capabilities. Specifically, we manually analyze 293 research papers that integrate multiple inputs, exploring the various objectives behind the inclusion of additional symbolic knowledge or sub-symbolic inputs, such as improving performance, reducing response times, and enhancing interpretability. Additionally, we relate the objectives to system characteristics, such as system architecture, targeted task, or application domain, uncovering trends and correlations that can provide deeper insights into the design choices and priorities of SWeML systems.
en
dc.description.sponsorship
FFG - Österr. Forschungsförderungs- gesellschaft mbH
-
dc.language.iso
en
-
dc.subject
semantic web
en
dc.subject
machine learning
en
dc.subject
knowledge graph
en
dc.subject
neuro-symbolic integration
en
dc.subject
system design
en
dc.subject
auxiliary inputs
en
dc.title
Analysing Objectives of Auxiliary Inputs in Semantic Web Machine Learning Systems
en
dc.type
Book Contribution
en
dc.type
Buchbeitrag
de
dc.relation.isbn
978-1-64368-578-6
-
dc.relation.doi
10.3233/FAIA400
-
dc.relation.issn
0922-6389
-
dc.description.startpage
900
-
dc.description.endpage
923
-
dc.relation.grantno
877389
-
dc.type.category
Edited Volume Contribution
-
dc.relation.eissn
1879-8314
-
tuw.booktitle
Handbook on Neurosymbolic AI and Knowledge Graphs
-
tuw.container.volume
400
-
tuw.peerreviewed
true
-
tuw.book.ispartofseries
Frontiers in Artificial Intelligence and Applications
-
tuw.relation.publisher
IOS Press
-
tuw.relation.publisherplace
Amsterdam
-
tuw.project.title
Ontology-Based ARtificial Intelligence in the Environmental Sector
-
tuw.researchTopic.id
I4
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E194-04 - Forschungsbereich Data Science
-
tuw.publisher.doi
10.3233/FAIA250238
-
dc.description.numberOfPages
24
-
tuw.author.orcid
0000-0001-6553-4175
-
tuw.author.orcid
0000-0001-6681-3328
-
tuw.author.orcid
0000-0003-3264-3687
-
tuw.author.orcid
0000-0002-5008-6856
-
tuw.author.orcid
0000-0003-4569-2496
-
tuw.author.orcid
0000-0002-6932-5036
-
tuw.author.orcid
0000-0003-4386-8195
-
tuw.author.orcid
0000-0001-9301-8418
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Wirtschaftswissenschaften
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
5020
-
wb.sciencebranch.value
90
-
wb.sciencebranch.value
10
-
item.openairetype
book part
-
item.openairecristype
http://purl.org/coar/resource_type/c_3248
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.orcid
0000-0001-6553-4175
-
crisitem.author.orcid
0000-0001-6681-3328
-
crisitem.author.orcid
0000-0003-3264-3687
-
crisitem.author.orcid
0000-0002-5008-6856
-
crisitem.author.orcid
0000-0003-4569-2496
-
crisitem.author.orcid
0000-0003-4386-8195
-
crisitem.author.orcid
0000-0001-9301-8418
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.project.funder
FFG - Österr. Forschungsförderungs- gesellschaft mbH