<div class="csl-bib-body">
<div class="csl-entry">Blohm, P., Indri, P., Gärtner, T., & Malhotra, S. (2025). Probably Approximately Global Robustness Certification. In <i>Proceedings of 42nd International Conference on Machine Learning (ICML 2025)</i>. 42nd International Conference on Machine Learning (ICML 2025), Vancouver, Canada.</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/225317
-
dc.description.abstract
We propose and investigate probabilistic guarantees for the adversarial robustness of classification algorithms. While traditional formal verification approaches for robustness are intractable and sampling-based approaches do not provide formal guarantees, our approach is able to efficiently certify a probabilistic relaxation of robustness. The key idea is to sample an
-net and invoke a local robustness oracle on the sample. Remarkably, the size of the sample needed to achieve probably approximately global robustness guarantees is independent of the input dimensionality, the number of classes, and the learning algorithm itself. Our approach can, therefore, be applied even to large neural networks that are beyond the scope of traditional formal verification. Experiments empirically confirm that it characterizes robustness better than state-of-the-art sampling-based approaches and scales better than formal methods.
en
dc.description.sponsorship
WWTF Wiener Wissenschafts-, Forschu und Technologiefonds
-
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.description.sponsorship
European Commission
-
dc.language.iso
en
-
dc.subject
Robustness
en
dc.subject
Learning Theory
en
dc.subject
PAC guarantees
en
dc.subject
Epsilon Nets
en
dc.title
Probably Approximately Global Robustness Certification
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
TU Wien, Austria
-
dc.relation.grantno
ICT22-059
-
dc.relation.grantno
I 6728
-
dc.relation.grantno
Proposal number: 101072930
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Proceedings of 42nd International Conference on Machine Learning (ICML 2025)
-
tuw.project.title
Structured Data Learning with Generalized Similarities
-
tuw.project.title
NanoX
-
tuw.project.title
Training Alliance for Computational Systems chemistry
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E194-06 - Forschungsbereich Machine Learning
-
tuw.publication.orgunit
E056-10 - Fachbereich SecInt-Secure and Intelligent Human-Centric Digital Technologies
-
tuw.publication.orgunit
E056-23 - Fachbereich Innovative Combinations and Applications of AI and ML (iCAIML)
-
tuw.publication.orgunit
E056-26 - Fachbereich Automated Reasoning
-
dc.description.numberOfPages
18
-
tuw.author.orcid
0000-0001-5985-9213
-
tuw.event.name
42nd International Conference on Machine Learning (ICML 2025)
en
tuw.event.startdate
13-07-2025
-
tuw.event.enddate
19-07-2025
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Vancouver
-
tuw.event.country
CA
-
tuw.event.presenter
Blohm, Peter
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Wirtschaftswissenschaften
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
5020
-
wb.sciencebranch.value
90
-
wb.sciencebranch.value
10
-
item.openairetype
conference paper
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
crisitem.author.dept
TU Wien, Austria
-
crisitem.author.dept
E194-06 - Forschungsbereich Machine Learning
-
crisitem.author.dept
E194-06 - Forschungsbereich Machine Learning
-
crisitem.author.dept
E194-06 - Forschungsbereich Machine Learning
-
crisitem.author.orcid
0000-0001-5985-9213
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.project.funder
WWTF Wiener Wissenschafts-, Forschu und Technologiefonds