<div class="csl-bib-body">
<div class="csl-entry">Zhang, T., & Szeider, S. (2025). The 3-Decomposition Conjecture: A SAT-Based Approach with Specialized Propagators. In M. Garcia de la Banda (Ed.), <i>31st International Conference on Principles and Practice of Constraint Programming (CP 2025)</i> (pp. 1–19). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.CP.2025.39</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/226096
-
dc.description.abstract
We investigate the 3-decomposition conjecture, which states that every connected cubic graph can be decomposed into a spanning tree, a collection of cycles, and a matching. Using a SAT-based approach enhanced with specialized propagators, we verify the conjecture for all relevant graphs up to 28 vertices. Our method extends the Satisfiability Modulo Symmetries (SMS) framework with specialized propagators that exploit theoretical properties of minimal counterexamples (counterexamples with the minimal number of vertices), enabling efficient pruning. We demonstrate that graphs containing certain substructures cannot be minimal counterexamples to the conjecture, allowing us to exclude these patterns during the search dynamically. Our experimental results quantify the impact of different propagator configurations and forbidden subgraph constraints on solving efficiency, showing significant performance improvements when leveraging these techniques. The approach scales effectively to graphs of 28 vertices. Our work illustrates how combining SAT solving with specialized constraint propagation techniques can successfully address challenging combinatorial problems in contemporary graph theory.
en
dc.language.iso
en
-
dc.relation.ispartofseries
Leibniz International Proceedings in Informatics (LIPIcs)
-
dc.subject
Combinatorics
en
dc.subject
Propagators
en
dc.subject
SAT
en
dc.subject
Subgraphs
en
dc.subject
Symmetry Breaking
en
dc.title
The 3-Decomposition Conjecture: A SAT-Based Approach with Specialized Propagators
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.editoraffiliation
Monash University, Australia
-
dc.relation.isbn
978-3-95977-380-5
-
dc.description.startpage
1
-
dc.description.endpage
19
-
dc.type.category
Full-Paper Contribution
-
dc.relation.eissn
1868-8969
-
tuw.booktitle
31st International Conference on Principles and Practice of Constraint Programming (CP 2025)
-
tuw.container.volume
340
-
tuw.peerreviewed
true
-
tuw.relation.publisher
Schloss Dagstuhl - Leibniz-Zentrum für Informatik
-
tuw.book.chapter
39
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E192-01 - Forschungsbereich Algorithms and Complexity
-
tuw.publication.orgunit
E056-13 - Fachbereich LogiCS
-
tuw.publication.orgunit
E056-23 - Fachbereich Innovative Combinations and Applications of AI and ML (iCAIML)
-
tuw.publisher.doi
10.4230/LIPIcs.CP.2025.39
-
dc.description.numberOfPages
19
-
tuw.author.orcid
0000-0001-8994-1656
-
tuw.event.name
31st International Conference on Principles and Practice of Constraint Programming (CP 2025)
en
tuw.event.startdate
10-08-2025
-
tuw.event.enddate
15-08-2025
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Glasgow
-
tuw.event.country
GB
-
tuw.event.presenter
Zhang, Tianwei
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
80
-
wb.sciencebranch.value
20
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.fulltext
no Fulltext
-
item.languageiso639-1
en
-
item.grantfulltext
none
-
item.openairetype
conference paper
-
item.cerifentitytype
Publications
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity