<div class="csl-bib-body">
<div class="csl-entry">Gavric, A., Bork, D., & Proper, H. (2026). Beyond Logs: AI’s Internal Representations as the New Process Evidence. In <i>Business Process Management: Responsible BPM Forum, Process Technology Forum, Educators Forum</i> (pp. 232–246). https://doi.org/10.1007/978-3-032-02936-2_17</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/226145
-
dc.description.abstract
Traditional process mining relies on symbolic event logs that represent activities as discrete labels, often overlooking the rich contextual and semantic nuances found in real-world data such as textual reports, visual records, or sensor outputs. In this paper, we propose a paradigm shift: using the internal representations of AI models—embedding spaces learned from data—as the foundation for process mining. Our framework performs both process discovery and conformance checking directly in these continuous vector spaces, enabling the detection of semantically similar yet lexically divergent events. We evaluate our approach along three dimensions: (i) whether embedding-based discovery maintains or improves accuracy over symbolic baselines, (ii) whether multimodal sources such as video and audio can be processed as unified embeddings for mining purposes, and (iii) whether conformance checking in embedding space enables alignment across noisy or semantically perturbed traces. By treating AI’s internal representations as a novel form of process evidence, we show how process mining can move beyond traditional logs and unlock deeper, semantically enriched interpretations of real-world workflows.
en
dc.language.iso
en
-
dc.relation.ispartofseries
Lecture Notes in Business Information Processing
-
dc.subject
AI Interpretability
en
dc.subject
Embedding Space
en
dc.subject
Internal Representations
en
dc.subject
Multimodal Data
en
dc.subject
Semantic Event Matching
en
dc.title
Beyond Logs: AI’s Internal Representations as the New Process Evidence
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.relation.isbn
978-3-032-02936-2
-
dc.description.startpage
232
-
dc.description.endpage
246
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Business Process Management: Responsible BPM Forum, Process Technology Forum, Educators Forum
-
tuw.container.volume
565
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
I4
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E194-03 - Forschungsbereich Business Informatics
-
tuw.publisher.doi
10.1007/978-3-032-02936-2_17
-
dc.description.numberOfPages
15
-
tuw.author.orcid
0000-0001-8259-2297
-
tuw.author.orcid
0000-0002-7318-2496
-
tuw.event.name
23rd International Conference on Business Process Management (BPM 2025)
en
tuw.event.startdate
31-08-2025
-
tuw.event.enddate
05-09-2025
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.country
ES
-
tuw.event.presenter
Gavric, Aleksandar
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Wirtschaftswissenschaften
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
5020
-
wb.sciencebranch.value
90
-
wb.sciencebranch.value
10
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.fulltext
no Fulltext
-
item.languageiso639-1
en
-
item.grantfulltext
none
-
item.openairetype
conference paper
-
item.cerifentitytype
Publications
-
crisitem.author.dept
E194-03 - Forschungsbereich Business Informatics
-
crisitem.author.dept
E194-03 - Forschungsbereich Business Informatics
-
crisitem.author.dept
E194-03 - Forschungsbereich Business Informatics
-
crisitem.author.orcid
0000-0001-8259-2297
-
crisitem.author.orcid
0000-0002-7318-2496
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering