<div class="csl-bib-body">
<div class="csl-entry">Rüb, M., Konegen, D., Selle, P., Sikora, A., & Müller-Gritschneder, D. (2025). <i>DRIP: DRop unImportant data Points -- Enhancing Machine Learning Efficiency with Grad-CAM-Based Real-Time Data Prioritization for On-Device Training</i>. arXiv. https://doi.org/10.48550/arXiv.2504.08364</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/226155
-
dc.description.abstract
Selecting data points for model training is critical in machine learning. Effective selection methods can reduce the labeling effort, optimize on-device training for embedded systems with limited data storage, and enhance the model performance. This paper introduces a novel algorithm that uses Grad-CAM to make online decisions about retaining or discarding data points. Optimized for embedded devices, the algorithm computes a unique DRIP Score to quantify the importance of each data point. This enables dynamic decision-making on whether a data point should be stored for potential retraining or discarded without compromising model performance. Experimental evaluations on four benchmark datasets demonstrate that our approach can match or even surpass the accuracy of models trained on the entire dataset, all while achieving storage savings of up to 39\%. To our knowledge, this is the first algorithm that makes online decisions about data point retention without requiring access to the entire dataset.
en
dc.language.iso
en
-
dc.subject
Embedded Machine Learning
en
dc.subject
online data valuation
en
dc.subject
on-device training
en
dc.subject
em- bedded devices
en
dc.subject
TinyML
en
dc.title
DRIP: DRop unImportant data Points -- Enhancing Machine Learning Efficiency with Grad-CAM-Based Real-Time Data Prioritization for On-Device Training
en
dc.type
Preprint
en
dc.type
Preprint
de
dc.identifier.arxiv
2504.08364
-
dc.contributor.affiliation
Hahn-Schickard-Gesellschaft für angewandte Forschung, Germany
-
dc.contributor.affiliation
Hahn-Schickard-Gesellschaft für angewandte Forschung, Germany
-
dc.contributor.affiliation
Hahn-Schickard-Gesellschaft für angewandte Forschung, Germany
-
dc.contributor.affiliation
Offenburg University of Applied Sciences, Germany
-
tuw.researchTopic.id
I2
-
tuw.researchTopic.name
Computer Engineering and Software-Intensive Systems
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E191-02 - Forschungsbereich Embedded Computing Systems
-
tuw.publisher.doi
10.48550/arXiv.2504.08364
-
dc.description.numberOfPages
10
-
tuw.author.orcid
0000-0003-0878-2919
-
tuw.author.orcid
0000-0003-0903-631X
-
tuw.publisher.server
arXiv
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Elektrotechnik, Elektronik, Informationstechnik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
2020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
50
-
wb.sciencebranch.value
40
-
wb.sciencebranch.value
10
-
item.openairecristype
http://purl.org/coar/resource_type/c_816b
-
item.fulltext
no Fulltext
-
item.languageiso639-1
en
-
item.grantfulltext
none
-
item.openairetype
preprint
-
item.cerifentitytype
Publications
-
crisitem.author.dept
Hahn-Schickard-Gesellschaft für angewandte Forschung, Germany
-
crisitem.author.dept
Hahn-Schickard-Gesellschaft für angewandte Forschung, Germany
-
crisitem.author.dept
Hahn-Schickard-Gesellschaft für angewandte Forschung, Germany
-
crisitem.author.dept
Offenburg University of Applied Sciences, Germany
-
crisitem.author.dept
E191-02 - Forschungsbereich Embedded Computing Systems