<div class="csl-bib-body">
<div class="csl-entry">Musliu, N., & Grasmann, L. (2026). A System Prototype for Food Sales Forecasting and Optimization to Reduce Food Waste for Short-Shelf-Life Products. In <i>Digital Humanism : First Interdisciplinary Science and Research Conference, DIGHUM 2025</i> (pp. 19–34). Springer. https://doi.org/10.1007/978-3-032-11108-1_2</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/226395
-
dc.description.abstract
The reduction of food waste is one of the major challenges of today for retailers and wholesalers. Large amounts of food are thrown
away on the retail and wholesale level per year. Since globally available resources are limited, preventing food waste is a very important
way to reduce the carbon footprint and even help protect the environment because the production of goods consumes both large amounts of energy and land. Preventing food waste is intertwined with the related problem of order generation. The generation of orders depends on accurate forecasts provided to the users. In this paper, we present a system description of a prototype that signicantly improves forecasts to facilitate the reduction of food waste through the use of machine learning to provide a basis for subsequent order optimization. Our system has been developed in cooperation with Austrian retailers and wholesalers who provide both real-world data and valuable insights into the inner workings of Austrian grocers. We present an overview of the system and the technologies utilized to achieve our goals. In addition, we also discuss the constraints and ethical considerations encountered. Our evaluation shows that our system can help achieve the goals of reducing food waste while being very useful to our project partners and, therefore, workable
in the real world.
en
dc.description.sponsorship
FFG - Österr. Forschungsförderungs- gesellschaft mbH
-
dc.language.iso
en
-
dc.subject
Sales Forecasting
en
dc.subject
Machine Learning
en
dc.subject
User Interaction
en
dc.subject
Food Waste Reduction
en
dc.title
A System Prototype for Food Sales Forecasting and Optimization to Reduce Food Waste for Short-Shelf-Life Products
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.relation.isbn
978-3-032-11108-1
-
dc.relation.doi
10.1007/978-3-032-11108-1
-
dc.description.startpage
19
-
dc.description.endpage
34
-
dc.relation.grantno
887547
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Digital Humanism : First Interdisciplinary Science and Research Conference, DIGHUM 2025
-
tuw.container.volume
16319
-
tuw.peerreviewed
true
-
tuw.relation.publisher
Springer
-
tuw.relation.publisherplace
Cham
-
tuw.project.title
AI-driven collaborative supply and demand matching platform for food waste reduction in the perishable food supply chain
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E192-02 - Forschungsbereich Databases and Artificial Intelligence
-
tuw.publication.orgunit
E056-23 - Fachbereich Innovative Combinations and Applications of AI and ML (iCAIML)
-
tuw.publisher.doi
10.1007/978-3-032-11108-1_2
-
dc.description.numberOfPages
16
-
tuw.author.orcid
0000-0002-3992-8637
-
tuw.event.name
Digital Humanism Interdisciplinary Science and Research Conference 2025
en
tuw.event.startdate
20-11-2025
-
tuw.event.enddate
21-11-2025
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Wien
-
tuw.event.country
AT
-
tuw.event.presenter
Grasmann, Lukas
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
80
-
wb.sciencebranch.value
20
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.fulltext
no Fulltext
-
item.languageiso639-1
en
-
item.grantfulltext
restricted
-
item.openairetype
conference paper
-
item.cerifentitytype
Publications
-
crisitem.author.dept
E192-02 - Forschungsbereich Databases and Artificial Intelligence
-
crisitem.author.dept
E192-02 - Forschungsbereich Databases and Artificial Intelligence
-
crisitem.author.orcid
0000-0002-3992-8637
-
crisitem.author.parentorg
E192 - Institut für Logic and Computation
-
crisitem.author.parentorg
E192 - Institut für Logic and Computation
-
crisitem.project.funder
FFG - Österr. Forschungsförderungs- gesellschaft mbH