<div class="csl-bib-body">
<div class="csl-entry">Haywood, A. L., Redshaw, J., Gärtner, T., Taylor, A., Mason, A. M., & Hirst, J. D. (2020). Machine Learning for Chemical Synthesis. In H. M. Cartwright (Ed.), <i>Machine Learning in Chemistry : The Impact of Artificial Intelligence</i> (pp. 169–194). The Royal Society of Chemistry. https://doi.org/10.1039/9781839160233-00169</div>
</div>
-
dc.identifier.isbn
9781788017893
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/24729
-
dc.description.abstract
The synthesis of new molecules is essential for progress in various sectors within the chemical industry and academia. Medicinal and materials chemistry are two examples. Searching through vast regions of chemical space for routes to new molecules is a time-consuming process carried out by expert synthetic chemists. The use of machine learning and artificial intelligence for synthetic chemistry is rapidly expanding, the aim being to reduce the timelines of chemical syntheses. Tools, which predict products of chemical reactions and design retrosynthetic routes, are attracting particular attention. Emerging computer-aided synthesis design (CASD) programs are not intended to replace synthetic chemists but to aid them in everyday decision making. The incorporation of condition optimisation and reaction performance is highly desirable. Combining such tools with an automated synthesis testing module holds much promise for the future of reaction condition optimisation. To achieve the desired progress in, and acceptance of CASD, there are a few challenges that need to be addressed.
en
dc.language.iso
en
-
dc.publisher
The Royal Society of Chemistry
-
dc.relation.ispartofseries
Theoretical and Computational Chemistry Series
-
dc.subject
Machine Learning
-
dc.subject
Chemical Synthesis
-
dc.subject
Chemical Data
-
dc.subject
Molecular Descriptions
-
dc.subject
Machine Learning Methods
-
dc.subject
Synthetic Route Design
-
dc.title
Machine Learning for Chemical Synthesis
en
dc.type
Buchbeitrag
de
dc.type
Book Contribution
en
dc.relation.isbn
978-1-78801-789-3
-
dc.relation.doi
10.1039/9781839160233
-
dc.relation.issn
2041-3181
-
dc.description.startpage
169
-
dc.description.endpage
194
-
dc.type.category
Edited Volume Contribution
-
dc.publisher.place
London
-
tuw.booktitle
Machine Learning in Chemistry : The Impact of Artificial Intelligence
-
tuw.relation.ispartofseries
Theoretical and Computational Chemistry Series
-
tuw.book.ispartofseries
Theoretical and Computational Chemistry Series
-
tuw.relation.publisher
The Royal Society of Chemistry
-
tuw.book.chapter
7
-
tuw.publication.orgunit
E194-06 - Forschungsbereich Machine Learning
-
tuw.publisher.doi
10.1039/9781839160233-00169
-
dc.description.numberOfPages
26
-
tuw.author.orcid
0000-0001-5985-9213
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Chemie
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1040
-
wb.facultyfocus
Information Systems Engineering (ISE)
de
wb.facultyfocus
Information Systems Engineering (ISE)
en
wb.facultyfocus.faculty
E180
-
item.languageiso639-1
en
-
item.openairetype
book part
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_3248
-
crisitem.author.dept
University of Nottingham
-
crisitem.author.dept
E194-06 - Forschungsbereich Machine Learning
-
crisitem.author.orcid
0000-0001-5985-9213
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering