<div class="csl-bib-body">
<div class="csl-entry">Hof, M. C. (2019). <i>The Alesker-Poincaré duality</i> [Diploma Thesis, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2019.69124</div>
</div>
-
dc.identifier.uri
https://doi.org/10.34726/hss.2019.69124
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/2733
-
dc.description
Abweichender Titel nach Übersetzung der Verfasserin/des Verfassers
-
dc.description.abstract
The Alesker-Poincaré Duality is an embedding of the space of smooth translation invariant valuations on convex bodies into its dual space. It is required to formulate the Fundamental Theorem of Algebraic Integral Geometry, and is based on the Alesker product, an algebraic operation on the space of smooth translation invariant valuations. This thesis contains a collection of notions and proofs for this theory. Furthermore the convolution of smooth valuations allows for an analogue duality, which is treated in the thesis also. Finally there is an extension of the notion of valuations on convex bodies to valuations on manifolds, which allows for a similar treatment, resulting again in a duality map, a collection of this theory is the final part of this thesis.
en
dc.language
English
-
dc.language.iso
en
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
Integralgeometrie
de
dc.subject
Bewertungen
de
dc.subject
konvexe Körper
de
dc.subject
integral geometry
en
dc.subject
valuations
en
dc.subject
convex bodies
en
dc.title
The Alesker-Poincaré duality
en
dc.title.alternative
Die Alesker-Poincaré Dualität
de
dc.type
Thesis
en
dc.type
Hochschulschrift
de
dc.rights.license
In Copyright
en
dc.rights.license
Urheberrechtsschutz
de
dc.identifier.doi
10.34726/hss.2019.69124
-
dc.contributor.affiliation
TU Wien, Österreich
-
dc.rights.holder
Mathias Christian Hof
-
dc.publisher.place
Wien
-
tuw.version
vor
-
tuw.thesisinformation
Technische Universität Wien
-
tuw.publication.orgunit
E104 - Institut für Diskrete Mathematik und Geometrie
-
dc.type.qualificationlevel
Diploma
-
dc.identifier.libraryid
AC15498163
-
dc.description.numberOfPages
78
-
dc.identifier.urn
urn:nbn:at:at-ubtuw:1-130288
-
dc.thesistype
Diplomarbeit
de
dc.thesistype
Diploma Thesis
en
dc.rights.identifier
In Copyright
en
dc.rights.identifier
Urheberrechtsschutz
de
tuw.advisor.staffStatus
staff
-
item.languageiso639-1
en
-
item.openairetype
master thesis
-
item.grantfulltext
open
-
item.fulltext
with Fulltext
-
item.cerifentitytype
Publications
-
item.mimetype
application/pdf
-
item.openairecristype
http://purl.org/coar/resource_type/c_bdcc
-
item.openaccessfulltext
Open Access
-
crisitem.author.dept
E104-06 - Forschungsbereich Konvexe und Diskrete Geometrie
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie