<div class="csl-bib-body">
<div class="csl-entry">Bauer, M., Bruveris, M., & Michor, P. W. (2015). Why use Sobolev metrics on the space of curves. In P. Turaga & A. Srivastava (Eds.), <i>Riemannian Computing in Computer Vision</i> (pp. 233–255). Springer Verlag. https://doi.org/10.1007/978-3-319-22957-7_11</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/28880
-
dc.description.abstract
We study reparametrization invariant Sobolev metrics on spaces of regular curves. We discuss their completeness properties and the resulting usability for applications in shape analysis. In particular, we will argue, that the development of efficient numerical methods for higher order Sobolev type metrics is an extremely desirable goal.
en
dc.publisher
Springer Verlag
-
dc.title
Why use Sobolev metrics on the space of curves
-
dc.type
Buchbeitrag
de
dc.type
Book Contribution
en
dc.relation.publication
Riemannian Computing in Computer Vision
-
dc.contributor.editoraffiliation
Florida State University, United States of America (the)
-
dc.relation.isbn
978-3-319-22957-7
-
dc.relation.doi
10.1007/978-3-319-22957-7
-
dc.description.startpage
233
-
dc.description.endpage
255
-
dc.type.category
Edited Volume Contribution
-
tuw.booktitle
Riemannian Computing in Computer Vision
-
tuw.relation.publisher
Springer Cham
-
tuw.book.chapter
11
-
tuw.publication.orgunit
E104-04 - Forschungsbereich Angewandte Geometrie
-
tuw.publisher.doi
10.1007/978-3-319-22957-7_11
-
dc.description.numberOfPages
23
-
tuw.editor.orcid
0000-0002-5263-5943
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.facultyfocus
Diskrete Mathematik und Geometrie
de
wb.facultyfocus
Discrete Mathematics and Geometry
en
wb.facultyfocus.faculty
E100
-
item.cerifentitytype
Publications
-
item.fulltext
no Fulltext
-
item.openairetype
book part
-
item.openairecristype
http://purl.org/coar/resource_type/c_3248
-
item.grantfulltext
none
-
crisitem.author.dept
E104 - Institut für Diskrete Mathematik und Geometrie