<div class="csl-bib-body">
<div class="csl-entry">Bova, S. M., & Slivovsky, F. (2016). On Compiling Structured CNFs to OBDDs. <i>Theory of Computing Systems</i>. https://doi.org/10.1007/s00224-016-9715-z</div>
</div>
We present new results on the size of OBDD representations of structurally characterized classes of CNF formulas. First, we prove that variable convex formulas (that is, formulas with incidence graphs that are convex with respect to the set of variables) have polynomial OBDD size. Second, we prove an exponential lower bound on the OBDD size of a family of CNF formulas with incidence graphs of bounded degree. We obtain the first result by identifying a simple sufficient condition—which we call the few subterms property—for a class of CNF formulas to have polynomial OBDD size, and show that variable convex formulas satisfy this condition. To prove the second result, we exploit the combinatorial properties of expander graphs; this approach allows us to establish an exponential lower bound on the OBDD size of formulas satisfying strong syntactic restrictions.
en
dc.description.sponsorship
European Research Council
-
dc.description.sponsorship
Austrian Science Fund (FWF)
-
dc.language
English
-
dc.language.iso
en
-
dc.publisher
Springer Science and Business Media
-
dc.relation.ispartof
Theory of computing systems
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
Knowledge compilation
en
dc.subject
Ordered binary decision diagram
en
dc.subject
Conjunctive normal
en
dc.title
On Compiling Structured CNFs to OBDDs
en
dc.type
Article
en
dc.type
Artikel
de
dc.rights.license
Creative Commons Namensnennung 4.0 International
de
dc.rights.license
Creative Commons Attribution 4.0 International
en
dc.relation.grantno
239962
-
dc.relation.grantno
P26200
-
dc.rights.holder
The Author(s) 2016
-
dc.type.category
Original Research Article
-
tuw.peerreviewed
false
-
tuw.version
vor
-
dcterms.isPartOf.title
Theory of computing systems
-
tuw.publication.orgunit
E192-01 - Forschungsbereich Algorithms and Complexity