<div class="csl-bib-body">
<div class="csl-entry">Worf, D. (2018). <i>Numerical continuation for periodic pipe flow with finite element method</i> [Diploma Thesis, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2018.48886</div>
</div>
-
dc.identifier.uri
https://doi.org/10.34726/hss.2018.48886
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/3490
-
dc.description
Abweichender Titel nach Übersetzung der Verfasserin/des Verfassers
-
dc.description.abstract
This thesis is concerned with the continuation theory of incompressible periodic pipe flow. For describing the dynamics of incompressible fluids we use the incompressible Navier-Stokes equation. For a better understanding of it we'll look at its derivation. For a long time now the consensus has been that the laminar solution is linearly stable for all Reynolds numbers. The original idea of this thesis was to adapt a numerical continuation procedure to see if it is possible to jump from the laminar solution branch onto a turbulent one, as it happens in practical experiments. Therefore we inspect the different numerical methods that are used in this procedure. Especially we look at a preconditioner for the linearized problem as the matrix given by the finite element method, using Hood-Taylor elements, becomes less well conditioned as the Reynolds number increases. Prompted by this we look at the convection-diffusion equation and the streamline diffusion discretisation to be able to use it in a multigrid method. To motivate the use of the continuation procedure we look at bifurcation theory, with Fredholm operators and Crandall-Rabinowitz' theorem. We also take a short look at the Allen-Cahn equation to test if the algorithm is correctly defined.
en
dc.language
English
-
dc.language.iso
en
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
numerical continuation
en
dc.subject
Navier Stokes
en
dc.subject
bifurcation
en
dc.subject
FEM
en
dc.title
Numerical continuation for periodic pipe flow with finite element method
en
dc.title.alternative
Numerische Pfadverfolgung für periodische Strömungen mit Finite Elemente Methoden
de
dc.type
Thesis
en
dc.type
Hochschulschrift
de
dc.rights.license
In Copyright
en
dc.rights.license
Urheberrechtsschutz
de
dc.identifier.doi
10.34726/hss.2018.48886
-
dc.contributor.affiliation
TU Wien, Österreich
-
dc.rights.holder
Dominik Worf
-
dc.publisher.place
Wien
-
tuw.version
vor
-
tuw.thesisinformation
Technische Universität Wien
-
tuw.publication.orgunit
E101 - Institut für Analysis und Scientific Computing
-
dc.type.qualificationlevel
Diploma
-
dc.identifier.libraryid
AC15011165
-
dc.description.numberOfPages
84
-
dc.identifier.urn
urn:nbn:at:at-ubtuw:1-108205
-
dc.thesistype
Diplomarbeit
de
dc.thesistype
Diploma Thesis
en
dc.rights.identifier
In Copyright
en
dc.rights.identifier
Urheberrechtsschutz
de
tuw.advisor.staffStatus
staff
-
item.languageiso639-1
en
-
item.grantfulltext
open
-
item.cerifentitytype
Publications
-
item.openairetype
master thesis
-
item.openairecristype
http://purl.org/coar/resource_type/c_bdcc
-
item.fulltext
with Fulltext
-
item.mimetype
application/pdf
-
item.openaccessfulltext
Open Access
-
crisitem.author.dept
E101 - Institut für Analysis und Scientific Computing