<div class="csl-bib-body">
<div class="csl-entry">Geiersbach, C. (2016). <i>Error estimates and optimal approaches to the stochastic homogenization in elliptic partial differential equations</i> [Diploma Thesis, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2016.33629</div>
</div>
-
dc.identifier.uri
https://doi.org/10.34726/hss.2016.33629
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/3592
-
dc.description
Zusammenfassung in deutscher Sprache
-
dc.description
Abweichender Titel nach Übersetzung der Verfasserin/des Verfassers
-
dc.description.abstract
This thesis is focused on the numerical treatment of stochastic homogenization in elliptic partial differential equations. A major application, and one that we keep in mind in this work, can be found in materials science, where one is interested in obtaining an average conductivity for a composite containing a fine microscopic structure. Such problems are also called "multiscale" due to the differences in (length) scales that are of interest. Determining an average conductivity requires first resolving at least part of the fine structure, which we can use to estimate the conductivity on the macroscopic scale. A central issue in numerically solving a homogenization problem comes from the fact that in order to minimize the error, one would need to determine conductivity on the microscale for the entire body; this is however not possible given the sheer size of such systems. One needs to therefore content oneself with a sample of the material and use this information to compute an average conductivity. This can be accomplished by first solving the so-called "cell problem." The essential contribution in this thesis is the estimation of the error of the cell problem, which we express as a function of domain size, mesh fineness and number of samples. We will quantify the work needed to solve this problem and then present an optimal approach to solving the problem.
en
dc.language
English
-
dc.language.iso
en
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
Elliptische partielle Differentialgleichungen
de
dc.subject
Homogenisierung
de
dc.subject
Mehrskalenprobleme
de
dc.subject
numerische Verfahren
de
dc.subject
Elliptic partial differential equations
en
dc.subject
homogenization
en
dc.subject
multiscale problems
en
dc.subject
numerical algorithms
en
dc.title
Error estimates and optimal approaches to the stochastic homogenization in elliptic partial differential equations
en
dc.title.alternative
Fehlerabschätzungen und optimale Verfahren für die stochastische Homogenisierung von elliptischen partiellen Differentialgleichungen
de
dc.type
Thesis
en
dc.type
Hochschulschrift
de
dc.rights.license
In Copyright
en
dc.rights.license
Urheberrechtsschutz
de
dc.identifier.doi
10.34726/hss.2016.33629
-
dc.contributor.affiliation
TU Wien, Österreich
-
dc.rights.holder
Caroline Geiersbach
-
dc.publisher.place
Wien
-
tuw.version
vor
-
tuw.thesisinformation
Technische Universität Wien
-
tuw.publication.orgunit
E101 - Institut für Analysis und Scientific Computing
-
dc.type.qualificationlevel
Diploma
-
dc.identifier.libraryid
AC13006445
-
dc.description.numberOfPages
91
-
dc.identifier.urn
urn:nbn:at:at-ubtuw:1-81638
-
dc.thesistype
Diplomarbeit
de
dc.thesistype
Diploma Thesis
en
dc.rights.identifier
In Copyright
en
dc.rights.identifier
Urheberrechtsschutz
de
tuw.advisor.staffStatus
staff
-
item.fulltext
with Fulltext
-
item.grantfulltext
open
-
item.cerifentitytype
Publications
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cf
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cf
-
item.openairetype
Thesis
-
item.openairetype
Hochschulschrift
-
item.openaccessfulltext
Open Access
-
crisitem.author.dept
E101 - Institut für Analysis und Scientific Computing