<div class="csl-bib-body">
<div class="csl-entry">Feischl, M., Page, M., & Praetorius, D. (2011). Convergence and quasi-optimality of adaptive FEM with inhomogeneous Dirichlet data. <i>Proceedings in Applied Mathematics and Mechanics</i>, <i>11</i>(1), 769–772. https://doi.org/10.1002/pamm.201110374</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/41060
-
dc.description.abstract
Recently, there has been a major breakthrough in the thorough
mathematical understanding of convergence and quasi-optimality of
h-adaptive finite element methods (AFEM) for second-order elliptic
PDEs. However, the focus of the numerical analysis usually lied on
model problems with homogeneous Dirichlet conditions, i.e.
-\Delta u = f in \Omega with u=0 on \Gamma=\partial\Omega,
see [Cascon et al., SINUM 2008] and the references therein. Whereas
the inclusion of inhomogeneous Neumann conditions into the numerical
analysis seems to be obvious, incorporating inhomogeneous Dirichlet
conditions is technically more demanding.
In our talk, we consider the lowest-order AFEM for the 2D Poisson
problem with mixed Dirichlet-Neumann boundary conditions. As is
usually done in practice, the given Dirichlet data are discretized by
nodal interpolation. We prove that this leads to a convergent
adaptive scheme which recovers the best possible convergence rate
with respect to the natural approximation class. Numerical
experiments and some remarks on the 3D case conclude the talk.
en
dc.language.iso
en
-
dc.publisher
Wiley
-
dc.relation.ispartof
Proceedings in Applied Mathematics and Mechanics
-
dc.title
Convergence and quasi-optimality of adaptive FEM with inhomogeneous Dirichlet data
en
dc.type
Artikel
de
dc.type
Article
en
dc.description.startpage
769
-
dc.description.endpage
772
-
dc.type.category
Original Research Article
-
dc.relation.eissn
1617-7061
-
dc.publisher.place
11
-
tuw.container.volume
11
-
tuw.container.issue
1
-
tuw.peerreviewed
false
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
Proceedings in Applied Mathematics and Mechanics
-
tuw.publication.orgunit
E101-02 - Forschungsbereich Numerik
-
tuw.publisher.doi
10.1002/pamm.201110374
-
dc.identifier.eissn
1617-7061
-
dc.description.numberOfPages
4
-
wb.sciencebranch
Mathematik, Informatik
-
wb.sciencebranch.oefos
11
-
wb.facultyfocus
Analysis und Scientific Computing
de
wb.facultyfocus
Analysis and Scientific Computing
en
wb.facultyfocus.faculty
E100
-
item.languageiso639-1
en
-
item.grantfulltext
none
-
item.cerifentitytype
Publications
-
item.openairetype
research article
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.fulltext
no Fulltext
-
crisitem.author.dept
E101-02-3 - Forschungsgruppe Computational PDEs
-
crisitem.author.dept
E101 - Institut für Analysis und Scientific Computing
-
crisitem.author.dept
E101 - Institut für Analysis und Scientific Computing