<div class="csl-bib-body">
<div class="csl-entry">Feischl, M., Page, M., & Praetorius, D. (2011). Convergence of adaptive FEM for elliptic obstacle problems. <i>Proceedings in Applied Mathematics and Mechanics</i>, <i>11</i>(1), 767–768. https://doi.org/10.1002/pamm.201110373</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/41061
-
dc.description.abstract
We treat the convergence of adaptive lowest-order FEM for some elliptic obstacle problem with affine obstacle χ, i.e.
(\nabla u, \nabla (u − v)) ≤ (f, u − v)
for all v ∈ A := {v ∈ H^1_0 (Ω) : v ≥ χ a.e in Ω}. For steering the adaptive mesh-refinement, we use a residual error estimator
\eta_\ell := ( \rho_\ell^2 + osc_\ell^2 )^1/2
that consists of the estimator from [Braess et al., Numer. Math. ´07] and additionally controls the data oscillations. We extend recent ideas from [Cascon et al., Numer. Anal. ´08] for the unrestricted variational problem to overcome the lack of Galerkin orthogonality. The main result states that an appropriately weighted sum
\Delta_\ell := \epsilon_\ell + \gamma \mu_\ell^2
of energy error, edge residuals, and data oscillations satisfies a contraction property
\Delta_{\ell+1} ≤ \kappa \Delta_\ell for all \ell \in \N
within each step of the adaptive loop. Here, \mu_\ell denotes a second error estimator which is equivalent to \eta_\ell and
0 < γ, κ < 1. This result is superior to a prior result from [Braess
et al., Numer. Math. ´07] in two ways: First, it is unnecessary to control the decay of the
data oscillations explicitly. Second, our analysis avoids the use of discrete local efficiency so that the local mesh-refinement is fairly arbitrary. In addition, we discuss the generalization to the case of inhomogeneous Dirichlet data and non-affine obstacles χ ∈ H^2 (Ω) and obtain similar results.
en
dc.language.iso
en
-
dc.publisher
Wiley
-
dc.relation.ispartof
Proceedings in Applied Mathematics and Mechanics
-
dc.title
Convergence of adaptive FEM for elliptic obstacle problems
en
dc.type
Artikel
de
dc.type
Article
en
dc.description.startpage
767
-
dc.description.endpage
768
-
dc.type.category
Other Contribution
-
dc.relation.eissn
1617-7061
-
dc.publisher.place
11
-
tuw.container.volume
11
-
tuw.container.issue
1
-
tuw.peerreviewed
false
-
dcterms.isPartOf.title
Proceedings in Applied Mathematics and Mechanics
-
tuw.publication.orgunit
E101-02 - Forschungsbereich Numerik
-
tuw.publisher.doi
10.1002/pamm.201110373
-
dc.identifier.eissn
1617-7061
-
dc.description.numberOfPages
2
-
wb.sciencebranch
Mathematik, Informatik
-
wb.sciencebranch.oefos
11
-
wb.facultyfocus
Analysis und Scientific Computing
de
wb.facultyfocus
Analysis and Scientific Computing
en
wb.facultyfocus.faculty
E100
-
item.languageiso639-1
en
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_6501
-
crisitem.author.dept
E101-02-3 - Forschungsgruppe Computational PDEs
-
crisitem.author.dept
E101 - Institut für Analysis und Scientific Computing
-
crisitem.author.dept
E101 - Institut für Analysis und Scientific Computing