<div class="csl-bib-body">
<div class="csl-entry">Goldenits, P., Praetorius, D., & Süss, D. (2011). Convergent Geometric Integrator for the Landau-Lifshitz-Gilbert Equation in Micromagnetics. <i>Proceedings in Applied Mathematics and Mechanics</i>, <i>11</i>(1), 775–776. https://doi.org/10.1002/pamm.201110376</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/41094
-
dc.description.abstract
We consider a finite element scheme of lowest order for the Landau-Lifshitz-Gilbert equation (LLG) which describes the dynamics of micromagnetism. In contrast to previous works, we examine LLG including the total magnetic field induced by several physical phenomena described in terms of exchange energy, anisotropy energy, magnetostatic energy, and Zeeman energy. Besides a strong nonlinearity and a non-convex side constraint, the non-local dependence of the demagnetization field from the magnetization represents a challenging task for the numerical integrator. Nevertheless, we prove unconditional convergence for the approximation of a weak solution.
en
dc.language.iso
en
-
dc.publisher
Wiley
-
dc.relation.ispartof
Proceedings in Applied Mathematics and Mechanics
-
dc.subject
FEM
-
dc.subject
Landau-Lifshitz-Gilbert Equation
-
dc.subject
Time Integration
-
dc.subject
nonlinear
-
dc.subject
nonconvex
-
dc.title
Convergent Geometric Integrator for the Landau-Lifshitz-Gilbert Equation in Micromagnetics
en
dc.type
Artikel
de
dc.type
Article
en
dc.description.startpage
775
-
dc.description.endpage
776
-
dc.type.category
Other Contribution
-
dc.relation.eissn
1617-7061
-
dc.publisher.place
11
-
tuw.container.volume
11
-
tuw.container.issue
1
-
tuw.peerreviewed
false
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.id
C1
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.name
Computational Materials Science
-
tuw.researchTopic.value
75
-
tuw.researchTopic.value
25
-
dcterms.isPartOf.title
Proceedings in Applied Mathematics and Mechanics
-
tuw.publication.orgunit
E138-03 - Forschungsbereich Functional and Magnetic Materials
-
tuw.publication.orgunit
E101-02 - Forschungsbereich Numerik
-
tuw.publisher.doi
10.1002/pamm.201110376
-
dc.identifier.eissn
1617-7061
-
dc.description.numberOfPages
2
-
wb.sciencebranch
Mathematik, Informatik
-
wb.sciencebranch
Physik, Mechanik, Astronomie
-
wb.sciencebranch.oefos
11
-
wb.sciencebranch.oefos
12
-
wb.facultyfocus
Analysis und Scientific Computing
de
wb.facultyfocus
Analysis and Scientific Computing
en
wb.facultyfocus.faculty
E100
-
item.fulltext
no Fulltext
-
item.openairecristype
http://purl.org/coar/resource_type/c_6501
-
item.languageiso639-1
en
-
item.cerifentitytype
Publications
-
item.grantfulltext
none
-
crisitem.author.dept
E101 - Institut für Analysis und Scientific Computing
-
crisitem.author.dept
E101 - Institut für Analysis und Scientific Computing