<div class="csl-bib-body">
<div class="csl-entry">Droste, M., Dziadek, S., & Kuich, W. (2020). Nivat-Theorem and Logic for Weighted Pushdown Automata on Infinite Words. In N. Saxena & S. Simon (Eds.), <i>40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020)</i> (pp. 44:1-44:14). Schloss Dagstuhl–Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.FSTTCS.2020.44</div>
</div>
-
dc.identifier.isbn
978-3-95977-174-0
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/41755
-
dc.description.abstract
Recently, weighted ω-pushdown automata have been introduced by Droste, Ésik, Kuich. This new type of automaton has access to a stack and models quantitative aspects of infinite words. Here, we consider a simple version of those automata. The simple ω-pushdown automata do not use ε-transitions and have a very restricted stack access. In previous work, we could show this automaton model to be expressively equivalent to context-free ω-languages in the unweighted case. Furthermore, semiring-weighted simple ω-pushdown automata recognize all ω-algebraic series. Here, we consider ω-valuation monoids as weight structures. As a first result, we prove that for this weight structure and for simple ω-pushdown automata, Büchi-acceptance and Muller-acceptance are expressively equivalent. In our second result, we derive a Nivat theorem for these automata stating that the behaviors of weighted ω-pushdown automata are precisely the projections of very simple ω-series restricted to ω-context-free languages. The third result is a weighted logic with the same expressive power as the new automaton model. To prove the equivalence, we use a similar result for weighted nested ω-word automata and apply our present result of expressive equivalence of Muller and Büchi acceptance.
en
dc.language.iso
en
-
dc.relation.ispartofseries
Leibniz International Proceedings in Informatics (LIPIcs)
-
dc.subject
Weighted Automata
-
dc.subject
Weighted automata
-
dc.subject
Pushdown automata
-
dc.subject
Infinite words
-
dc.title
Nivat-Theorem and Logic for Weighted Pushdown Automata on Infinite Words
en
dc.type
Konferenzbeitrag
de
dc.type
Inproceedings
en
dc.relation.publication
40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020)
-
dc.relation.isbn
978-3-95977-174-0
-
dc.relation.issn
1868-8969
-
dc.description.startpage
44:1
-
dc.description.endpage
44:14
-
dc.type.category
Full-Paper Contribution
-
dc.publisher.place
Dagstuhl, Deutschland
-
tuw.booktitle
40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020)
-
tuw.container.volume
182
-
tuw.book.ispartofseries
Leibniz International Proceedings in Informatics (LIPIcs)
-
tuw.relation.publisher
Schloss Dagstuhl–Leibniz-Zentrum für Informatik
-
tuw.relation.publisherplace
Dagstuhl, Germany
-
tuw.publication.orgunit
E104-02 - Forschungsbereich Computational Logic
-
tuw.publisher.doi
10.4230/LIPIcs.FSTTCS.2020.44
-
dc.description.numberOfPages
14
-
tuw.event.name
40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science - FSTTCS 2020
-
tuw.event.startdate
14-12-2020
-
tuw.event.enddate
18-12-2020
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Dagstuhl
-
tuw.event.country
DE
-
tuw.event.presenter
Droste, Manfred
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.facultyfocus
Diskrete Mathematik und Geometrie
de
wb.facultyfocus
Discrete Mathematics and Geometry
en
wb.facultyfocus.faculty
E100
-
item.languageiso639-1
en
-
item.openairetype
conference paper
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
crisitem.author.dept
E104 - Institut für Diskrete Mathematik und Geometrie