<div class="csl-bib-body">
<div class="csl-entry">Nannen, L., Tichy, K., & Wess, M. (2019). Complex Scaled Infinite Elements for Wave Equations in Heterogeneous Open Systems. In M. Kaltenbacher, J. M. Melenk, L. Nannen, & F. Toth (Eds.), <i>Proceedings of the 14th International Conference on Mathematical and Numerical Aspects of Wave Propagation</i> (pp. 520–521). Proceedings of the 14th International Conference on Mathematical and Numerical Aspects of Wave Propagation. https://doi.org/10.34726/waves2019</div>
</div>
-
dc.identifier.isbn
978-3-200-06511-6
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/41762
-
dc.description.abstract
The technique of complex scaling is a popular way to deal with the wave equation on unbounded domains. It is based on a complex coordinate stretching in the time harmonic regime. In our work we consider settings, where the usual cartesian or radial scalings are not applicable due to inhomogeneous exterior domains (e.g. open waveguids in non-axial directions)We apply a scaling in normal direction. Moreover we use infinite elements to discretize the complex scaled equation instead of truncating the domain to benefit from superior approximation properties and omit an additional truncation error. We present numerical experiments to illustrate our results.
en
dc.language.iso
en
-
dc.publisher
Proceedings of the 14th International Conference on Mathematical and Numerical Aspects of Wave Propagation
-
dc.title
Complex Scaled Infinite Elements for Wave Equations in Heterogeneous Open Systems
en
dc.type
Konferenzbeitrag
de
dc.type
Inproceedings
en
dc.relation.publication
Proceedings of the 14th International Conference on Mathematical and Numerical Aspects of Wave Propagation
-
dc.relation.isbn
978-3-200-06511-6
-
dc.relation.doi
10.34726/waves2019
-
dc.description.startpage
520
-
dc.description.endpage
521
-
dc.type.category
Full-Paper Contribution
-
dc.publisher.place
TU Wien, Inst. of Mechanics a. Mechatroncis, Inst. of Analysis a. Sci. Comp., Wien
-
tuw.booktitle
Proceedings of the 14th International Conference on Mathematical and Numerical Aspects of Wave Propagation
-
tuw.peerreviewed
true
-
tuw.relation.publisher
Institute of Mechanics and Mechatronics, Faculty of Mechanical and Industrial Engineering, Institute of Analysis and Scientific Computing, Faculty of Mathematics and Geoinformation, TU Wien Wien
-
tuw.relation.publisherplace
Wien
-
tuw.researchTopic.id
X1
-
tuw.researchTopic.name
außerhalb der gesamtuniversitären Forschungsschwerpunkte
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E101-03 - Forschungsbereich Scientific Computing and Modelling
-
tuw.publication.orgunit
E325-03 - Forschungsbereich Technische Akustik
-
tuw.publication.orgunit
E101-02 - Forschungsbereich Numerik
-
tuw.publisher.doi
10.34726/waves2019
-
dc.description.numberOfPages
2
-
tuw.event.name
WAVES 2019 - 14th International Conference on Mathematical and Numerical Aspects of Wave Propagation
-
tuw.event.startdate
25-08-2019
-
tuw.event.enddate
30-08-2019
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Wien
-
tuw.event.country
AT
-
tuw.event.presenter
Wess, Markus
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch
Physik, Astronomie
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.oefos
1030
-
wb.facultyfocus
Analysis und Scientific Computing
de
wb.facultyfocus
Analysis and Scientific Computing
en
wb.facultyfocus.faculty
E100
-
item.cerifentitytype
Publications
-
item.openairetype
conference paper
-
item.fulltext
no Fulltext
-
item.languageiso639-1
en
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.grantfulltext
none
-
crisitem.author.dept
E101-03 - Forschungsbereich Scientific Computing and Modelling
-
crisitem.author.dept
E101 - Institut für Analysis und Scientific Computing
-
crisitem.author.dept
E101-03-1 - Forschungsgruppe Computational Mathematics in Engineering
-
crisitem.author.orcid
0000-0001-6323-0821
-
crisitem.author.parentorg
E101 - Institut für Analysis und Scientific Computing
-
crisitem.author.parentorg
E100 - Fakultät für Mathematik und Geoinformation
-
crisitem.author.parentorg
E101-03 - Forschungsbereich Scientific Computing and Modelling