<div class="csl-bib-body">
<div class="csl-entry">Kynčlová, P., Hron, K., & Filzmoser, P. (2017). Correlation Between Compositional Parts Based on Symmetric Balances. <i>Mathematical Geosciences</i>, <i>49</i>(6), 777–796. https://doi.org/10.1007/s11004-016-9669-3</div>
</div>
Correlation coefficients are most popular in statistical practice for measuring pairwise variable associations. Compositional data, carrying only relative information, require a different treatment in correlation analysis. For identifying the association between two compositional parts in terms of their dominance with respect to the other parts in the composition, symmetric balances are constructed, which capture all relative information in the form of aggregated logratios of both compositional parts of interest. The resulting coordinates have the form of logratios of individual parts to a (weighted) “average representative” of the other parts, and thus, they clearly indicate how the respective parts dominate in the composition on average. The balances form orthonormal coordinates, and thus, the standard correlation measures relying on the Euclidean geometry can be used to measure the association. Simulation studies provide deeper insight into the proposed approach, and allow for comparisons with alternative measures. An application from geochemistry (Kola moss) indicates that correlations based on symmetric balances serve as a sensitive tool to reveal underlying geochemical processes.
en
dc.description.sponsorship
Grant COST Action CRoNoS
-
dc.language
English
-
dc.language.iso
en
-
dc.publisher
SPRINGER HEIDELBERG
-
dc.relation.ispartof
Mathematical Geosciences
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
Correlation analysis
en
dc.subject
Compositional data
en
dc.subject
Sequential binary partitioning
en
dc.subject
Symmetric balances
en
dc.subject
Logratio transformations
en
dc.title
Correlation Between Compositional Parts Based on Symmetric Balances
en
dc.type
Article
en
dc.type
Artikel
de
dc.rights.license
Creative Commons Namensnennung 4.0 International
de
dc.rights.license
Creative Commons Attribution 4.0 International
en
dc.contributor.affiliation
Palacký University Olomouc, Czechia
-
dc.description.startpage
777
-
dc.description.endpage
796
-
dc.relation.grantno
IC1408
-
dc.rights.holder
The Author(s) 2017
-
dc.type.category
Original Research Article
-
tuw.container.volume
49
-
tuw.container.issue
6
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
tuw.version
vor
-
dcterms.isPartOf.title
Mathematical Geosciences
-
tuw.publication.orgunit
E105 - Institut für Stochastik und Wirtschaftsmathematik
-
tuw.publisher.doi
10.1007/s11004-016-9669-3
-
dc.identifier.eissn
1874-8953
-
dc.identifier.libraryid
AC15187474
-
dc.description.numberOfPages
20
-
dc.identifier.urn
urn:nbn:at:at-ubtuw:3-4019
-
dc.rights.identifier
CC BY 4.0
de
dc.rights.identifier
CC BY 4.0
en
item.openaccessfulltext
Open Access
-
item.languageiso639-1
en
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.openairetype
research article
-
item.grantfulltext
open
-
item.fulltext
with Fulltext
-
crisitem.author.dept
E105 - Institut für Stochastik und Wirtschaftsmathematik