<div class="csl-bib-body">
<div class="csl-entry">Mayer, R., Taha Abdel, A., & Rauber, A. (2007). Visualising Class Distribution on Self-Organising Maps. In J. Marques de Sá, L. A. Alexandre, W. Duch, & D. P. Mandic (Eds.), <i>Artificial Neural Networks - ICANN 2007</i> (pp. 359–368). Springer LNCS. https://doi.org/10.1007/978-3-540-74695-9_37</div>
</div>
-
dc.identifier.isbn
9783540746935
-
dc.identifier.isbn
9783540746959
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/52011
-
dc.description.abstract
The Self-Organising Map is a popular unsupervised neural network model which has been used successfully in various contexts for clustering data. Even though labelled data is not required for the training process, in many applications class labelling of some sort is available. A visualisation uncovering the distribution and arrangement of the classes over the map can help the user to gain a better understanding and analysis of the mapping created by the SOM, e.g. through comparing the results of the manual labelling and automatic arrangement. In this paper, we present such a visualisation technique, which smoothly colours a SOM according to the distribution and location of the given class labels. It allows the user to easier assess the quality of the manual labelling by highlighting outliers and border data close to different classes.
en
dc.publisher
Springer LNCS
-
dc.relation.ispartofseries
Lecture Notes in Computer Science
-
dc.title
Visualising Class Distribution on Self-Organising Maps
-
dc.type
Konferenzbeitrag
de
dc.type
Inproceedings
en
dc.relation.publication
Artificial Neural Networks - ICANN 2007
-
dc.relation.isbn
978-3-540-74693-5
-
dc.relation.doi
10.1007/978-3-540-74695-9
-
dc.relation.issn
0302-9743
-
dc.description.startpage
359
-
dc.description.endpage
368
-
dc.type.category
Full-Paper Contribution
-
dc.relation.eissn
1611-3349
-
dc.publisher.place
LNCS 4669
-
tuw.booktitle
Artificial Neural Networks - ICANN 2007
-
tuw.container.volume
4669
-
tuw.peerreviewed
true
-
tuw.relation.publisher
Springer Berlin, Heidelberg
-
tuw.book.chapter
37
-
tuw.researchTopic.id
X1
-
tuw.researchTopic.name
außerhalb der gesamtuniversitären Forschungsschwerpunkte
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E194-01 - Forschungsbereich Information und Software Engineering
-
tuw.publisher.doi
10.1007/978-3-540-74695-9_37
-
dc.description.numberOfPages
10
-
tuw.event.name
ICANN
-
tuw.event.startdate
09-09-2007
-
tuw.event.enddate
13-09-2007
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Porto, Portugal
-
tuw.event.place
Porto, Portugal
-
tuw.event.country
EU
-
tuw.event.presenter
Mayer, Rudolf
-
wb.sciencebranch
Mathematik, Informatik
-
wb.sciencebranch.oefos
11
-
wb.presentation.type
science to science/art to art
-
item.openairetype
conference paper
-
item.grantfulltext
restricted
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
crisitem.author.dept
E194 - Institut für Information Systems Engineering
-
crisitem.author.dept
E194 - Institut für Information Systems Engineering
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.orcid
0000-0003-0424-5999
-
crisitem.author.orcid
0000-0002-9272-6225
-
crisitem.author.parentorg
E180 - Fakultät für Informatik
-
crisitem.author.parentorg
E180 - Fakultät für Informatik
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering