<div class="csl-bib-body">
<div class="csl-entry">Ebner, G., Hetzl, S., Leitsch, A., Reis, G., & Weller, D. (2019). On the Generation of Quantified Lemmas. <i>Journal of Automated Reasoning</i>, <i>63</i>, 95–126. https://doi.org/10.1007/s10817-018-9462-8</div>
</div>
In this paper we present an algorithmic method of lemma introduction. Given a proof in predicate logic with equality the algorithm is capable of introducing several universal lemmas. The method is based on an inversion of Gentzen’s cut-elimination method for sequent calculus. The first step consists of the computation of a compact representation (a so-called decomposition) of Herbrand instances in a cut-free proof. Given a decomposition the problem of computing the corresponding lemmas is reduced to the solution of a second-order unification problem (the solution conditions). It is shown that that there is always a solution of the solution conditions, the canonical solution. This solution yields a sequence of lemmas and, finally, a proof based on these lemmas. Various techniques are developed to simplify the canonical solution resulting in a reduction of proof complexity. Moreover, the paper contains a comprehensive empirical evaluation of the implemented method and gives an application to a mathematical proof.
en
dc.description.sponsorship
Vienna Science and Technology Fund (WWTF)
-
dc.language
English
-
dc.language.iso
en
-
dc.publisher
SPRINGER
-
dc.relation.ispartof
Journal of Automated Reasoning
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
Cut-introduction
en
dc.subject
Herbrand’s theorem
en
dc.subject
Proof theory
en
dc.subject
Lemma generation
en
dc.subject
The resolution calculus
en
dc.title
On the Generation of Quantified Lemmas
en
dc.type
Article
en
dc.type
Artikel
de
dc.rights.license
Creative Commons Namensnennung 4.0 International
de
dc.rights.license
Creative Commons Attribution 4.0 International
en
dc.contributor.affiliation
Carnegie Mellon University Qatar, Qatar
-
dc.description.startpage
95
-
dc.description.endpage
126
-
dc.relation.grantno
VRG12-004
-
dc.rights.holder
The Author(s) 2018
-
dc.type.category
Original Research Article
-
tuw.container.volume
63
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
tuw.version
vor
-
wb.publication.intCoWork
International Co-publication
-
dcterms.isPartOf.title
Journal of Automated Reasoning
-
tuw.publication.orgunit
E104 - Institut für Diskrete Mathematik und Geometrie
-
tuw.publisher.doi
10.1007/s10817-018-9462-8
-
dc.date.onlinefirst
2018-03
-
dc.identifier.eissn
1573-0670
-
dc.identifier.libraryid
AC15324292
-
dc.description.numberOfPages
32
-
dc.identifier.urn
urn:nbn:at:at-ubtuw:3-5141
-
tuw.author.orcid
0000-0002-6461-5982
-
tuw.author.orcid
0000-0002-7084-7878
-
dc.rights.identifier
CC BY 4.0
de
dc.rights.identifier
CC BY 4.0
en
wb.sci
true
-
item.languageiso639-1
en
-
item.openairetype
research article
-
item.grantfulltext
open
-
item.fulltext
with Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.openaccessfulltext
Open Access
-
crisitem.author.dept
E104-02 - Forschungsbereich Computational Logic
-
crisitem.author.dept
E104-02 - Forschungsbereich Computational Logic
-
crisitem.author.dept
E192-05 - Forschungsbereich Theory and Logic
-
crisitem.author.dept
Carnegie Mellon University Qatar
-
crisitem.author.dept
E104 - Institut für Diskrete Mathematik und Geometrie
-
crisitem.author.orcid
0000-0002-6461-5982
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie