<div class="csl-bib-body">
<div class="csl-entry">Schulz, C., & Träff, J. L. (2017). Better Process Mapping and Sparse Quadratic Assignment. In C. S. Iliopoulos, S. P. Pissis, S. J. Puglisi, & R. Raman (Eds.), <i>16th International Symposium on Experimental Algorithms, SEA 2017</i> (pp. 4:1-4:15). Schloss Dagstuhl - Leibniz-Zentrum für Informatik GmbH. https://doi.org/10.4230/LIPIcs.SEA.2017.4</div>
</div>
-
dc.identifier.isbn
978-3-95977-036-1
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/56976
-
dc.description.abstract
Communication and topology aware process mapping is a powerful approach to reduce communication time in parallel applications with known communication patterns on large, distributed memory systems. We address the problem as a quadratic assignment problem (QAP), and present algorithms to construct initial mappings of processes to processors as well as fast local search algorithms to further improve the mappings. By exploiting assumptions that typically hold for applications and modern supercomputer systems such as sparse communication patterns and hierarchically organized communication systems, we arrive at significantly more powerful algorithms for these special QAPs. Our multilevel construction algorithms employ recently developed, perfectly balanced graph partitioning techniques and excessively exploit the given communication system hierarchy. We present improvements to a local search algorithm of Brandfass et al. (2013), and decrease the running time by reducing the time needed to perform swaps in the assignment as well as by carefully constraining local search neighborhoods. Experiments indicate that our algorithms not only dramatically speed up local search, but due to the multilevel approach also find much better solutions in practice.
en
dc.language.iso
en
-
dc.publisher
Schloss Dagstuhl - Leibniz-Zentrum für Informatik GmbH
-
dc.relation.ispartofseries
Leibniz International Proceedings in Informatics (LIPIcs)
-
dc.subject
graph partitioning
-
dc.subject
rank reordering
-
dc.subject
graph algorithms
-
dc.subject
process mapping
-
dc.title
Better Process Mapping and Sparse Quadratic Assignment
en
dc.type
Konferenzbeitrag
de
dc.type
Inproceedings
en
dc.relation.publication
16th International Symposium on Experimental Algorithms, SEA 2017
-
dc.relation.isbn
978-3-95977-036-1
-
dc.relation.issn
1868-8969
-
dc.description.startpage
4:1
-
dc.description.endpage
4:15
-
dc.type.category
Full-Paper Contribution
-
dc.publisher.place
LIPIcs - Vol. 75
-
tuw.booktitle
16th International Symposium on Experimental Algorithms, SEA 2017
-
tuw.container.volume
75
-
tuw.peerreviewed
true
-
tuw.relation.publisher
Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik
-
tuw.relation.publisherplace
Dagstuhl
-
tuw.researchTopic.id
I4
-
tuw.researchTopic.id
C5
-
tuw.researchTopic.name
Distributed and Parallel Systems
-
tuw.researchTopic.name
Computer Science Foundations
-
tuw.researchTopic.value
90
-
tuw.researchTopic.value
10
-
tuw.publication.orgunit
E191-04 - Forschungsbereich Parallel Computing
-
tuw.publisher.doi
10.4230/LIPIcs.SEA.2017.4
-
dc.description.numberOfPages
15
-
tuw.event.name
16th International Symposium on Experimental Algorithms, SEA 2017