We discuss results for the Ribaucour transformation of curves or of higher dimensional smooth and discrete submanifolds. In particular, a result for the reduction of the ambient dimension of a submanifold is proved and the notion of Ribaucour coordinates is derived using a Bianchi permutability theorem. Further, we discuss smoothing of semi-discrete curvature line nets and an interpolation by Ribaucour transformations.
en
dc.language
English
-
dc.language.iso
en
-
dc.publisher
Springer Nature
-
dc.relation.ispartof
Beitraege zur Algebra und Geometrie
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
Channel surface
en
dc.subject
Canal surface
en
dc.subject
Semi-discrete surface
en
dc.subject
Curvature line net
en
dc.subject
Discrete principal net
en
dc.subject
Circular net
en
dc.subject
Ribaucour transformation
en
dc.subject
Ribaucour coordinates
en
dc.title
Ribaucour coordinates
en
dc.type
Article
en
dc.type
Artikel
de
dc.rights.license
Creative Commons Namensnennung 4.0 International
de
dc.rights.license
Creative Commons Attribution 4.0 International
en
dc.contributor.affiliation
University of Bath
-
dc.rights.holder
The Author(s) 2018
-
dc.type.category
Original Research Article
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
tuw.version
vor
-
wb.publication.intCoWork
International Co-publication
-
dcterms.isPartOf.title
Beitraege zur Algebra und Geometrie
-
tuw.publication.orgunit
E104 - Institut für Diskrete Mathematik und Geometrie
-
tuw.publisher.doi
10.1007/s13366-018-0391-9
-
dc.identifier.eissn
2191-0383
-
dc.identifier.libraryid
AC15324298
-
dc.identifier.urn
urn:nbn:at:at-ubtuw:3-5206
-
tuw.author.orcid
0000-0002-3599-0783
-
tuw.author.orcid
0000-0001-6773-0399
-
dc.rights.identifier
CC BY 4.0
de
dc.rights.identifier
CC BY 4.0
en
wb.sci
true
-
item.fulltext
with Fulltext
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.cerifentitytype
Publications
-
item.openairetype
research article
-
item.grantfulltext
open
-
item.openaccessfulltext
Open Access
-
item.languageiso639-1
en
-
crisitem.author.dept
University of Bath
-
crisitem.author.dept
E104-03 - Forschungsbereich Differentialgeometrie und geometrische Strukturen
-
crisitem.author.dept
E104-03 - Forschungsbereich Differentialgeometrie und geometrische Strukturen
-
crisitem.author.orcid
0000-0002-3599-0783
-
crisitem.author.orcid
0000-0001-6773-0399
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie