<div class="csl-bib-body">
<div class="csl-entry">Schörghuber, M., Wallner, M., Jung, R., Humenberger, M., & Gelautz, M. (2018). Vision-based Autonomous Feeding Robot. In P. M. Roth, M. Welk, & M. Urschler (Eds.), <i>Proceedings of the OAGM Workshop 2018 Medical Image Analysis</i> (pp. 111–115). Verlag der Technischen Universität Graz. https://doi.org/10.3217/978-3-85125-603-1-23</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/57472
-
dc.description.abstract
This paper tackles the problem of vision-based indoor navigation for robotic platforms. Contrary to methods using adaptions of the infrastructure (e.g. magnets, rails), vision-based methods try to use natural landmarks for localization. However, this imposes the challenge of robustly establishing correspondences between query images and the natural environment which can further be used for pose estimation. We propose a monocular and stereo VSLAM algorithm which is able to, first, generate a map of the target environment and, second, use this map to robustly localize a robot. Our hybrid VSLAM approach is able to utilize map points from the previously generated map to (i) increase robustness of its local mapping against challenging situations such as rapid movements, dominant rotations, motion blur or inappropriate exposure time, and to (ii) continuously assess the quality of the local map. We evaluated our approach in a real-world environment as well as using public benchmark datasets. The results
show that our hybrid approach improves the performance in comparison to VSLAM without an offline map.
en
dc.language.iso
en
-
dc.publisher
Verlag der Technischen Universität Graz
-
dc.title
Vision-based Autonomous Feeding Robot
en
dc.type
Konferenzbeitrag
de
dc.type
Inproceedings
en
dc.relation.publication
Proceedings of the OAGM Workshop 2018 Medical Image Analysis
-
dc.relation.isbn
978-3-85125-603-1
-
dc.relation.doi
10.3217/978-3-85125-603-1
-
dc.description.startpage
111
-
dc.description.endpage
115
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Proceedings of the OAGM Workshop 2018 Medical Image Analysis
-
tuw.peerreviewed
true
-
tuw.relation.publisher
Verlag der Technischen Universität Graz
-
tuw.researchTopic.id
I5
-
tuw.researchTopic.name
Visual Computing and Human-Centered Technology
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E193-01 - Forschungsbereich Computer Vision
-
tuw.publisher.doi
10.3217/978-3-85125-603-1-23
-
dc.description.numberOfPages
5
-
tuw.event.name
OAGM Workshop 2018 Medical Image Analysis
-
tuw.event.startdate
15-05-2018
-
tuw.event.enddate
16-05-2018
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Hall
-
tuw.event.country
AT
-
tuw.event.presenter
Schörghuber, Matthias
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.facultyfocus
Visual Computing and Human-Centered Technology (VC + HCT)
de
wb.facultyfocus
Visual Computing and Human-Centered Technology (VC + HCT)
en
wb.facultyfocus.faculty
E180
-
wb.presentation.type
science to science/art to art
-
item.languageiso639-1
en
-
item.cerifentitytype
Publications
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cf
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cf
-
item.fulltext
no Fulltext
-
item.grantfulltext
restricted
-
item.openairetype
Konferenzbeitrag
-
item.openairetype
Inproceedings
-
crisitem.author.dept
E193-01 - Forschungsbereich Computer Vision
-
crisitem.author.orcid
0000-0002-9476-0865
-
crisitem.author.parentorg
E193 - Institut für Visual Computing and Human-Centered Technology