<div class="csl-bib-body">
<div class="csl-entry">Kindermann, P., Kobourov, S., Löffler, M., Nöllenburg, M., Schulz, A., & Vogtenhuber, B. (2018). Lombardi Drawings of Knots and Links. In F. Frati & K.-L. Ma (Eds.), <i>Graph Drawing and Network Visualization. GD 2018</i> (pp. 113–126). Springer. https://doi.org/10.1007/978-3-319-73915-1_10</div>
</div>
-
dc.identifier.isbn
9783319739151
-
dc.identifier.isbn
9783319739144
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/57501
-
dc.description.abstract
Knot and link diagrams are projections of one or more 3- dimensional simple closed curves into lR2, such that no more than two points project to the same point in lR2. These diagrams are drawings of 4-regular plane multigraphs. Knots are typically smooth curves in lR3, so their projections should be smooth curves in lR2 with good continu- ity and large crossing angles: exactly the properties of Lombardi graph drawings (defined by circular-arc edges and perfect angular resolution).
We show that several knots do not allow plane Lombardi drawings. On the other hand, we identify a large class of 4-regular plane multigraphs that do have Lombardi drawings. We then study two relaxations of Lombardi drawings and show that every knot admits a plane 2-Lombardi drawing (where edges are composed of two circular arcs). Further, every knot is near-Lombardi, that is, it can be drawn as Lombardi drawing when relaxing the angular resolution requirement by an arbitrary small angular offset ε, while maintaining a 180◦ angle between opposite edges.
en
dc.relation.ispartofseries
Lecture Notes in Computer Science
-
dc.subject
graph drawing
-
dc.subject
knot theory
-
dc.subject
knot diagrams
-
dc.title
Lombardi Drawings of Knots and Links
-
dc.type
Konferenzbeitrag
de
dc.type
Inproceedings
en
dc.relation.isbn
978-3-030-04414-5
-
dc.relation.doi
10.1007/978-3-030-04414-5
-
dc.relation.issn
0302-9743
-
dc.description.startpage
113
-
dc.description.endpage
126
-
dc.type.category
Full-Paper Contribution
-
dc.relation.eissn
1611-3349
-
tuw.booktitle
Graph Drawing and Network Visualization. GD 2018
-
tuw.container.volume
11282
-
tuw.peerreviewed
true
-
tuw.book.ispartofseries
Lecture Notes in Computer Science
-
tuw.relation.publisher
Springer
-
tuw.relation.publisherplace
Cham
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E192-01 - Forschungsbereich Algorithms and Complexity
-
tuw.publisher.doi
10.1007/978-3-319-73915-1_10
-
dc.description.numberOfPages
14
-
tuw.event.name
26th International Symposium on Graph Drawing and Network Visualization (GD 2018)
-
tuw.event.startdate
26-09-2018
-
tuw.event.enddate
28-09-2018
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Barcelona
-
tuw.event.country
ES
-
tuw.event.presenter
Kindermann, Philipp
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.facultyfocus
Logic and Computation (LC)
de
wb.facultyfocus
Logic and Computation (LC)
en
wb.facultyfocus.faculty
E180
-
wb.presentation.type
science to science/art to art
-
item.grantfulltext
none
-
item.openairetype
conference paper
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.cerifentitytype
Publications
-
item.fulltext
no Fulltext
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity