<div class="csl-bib-body">
<div class="csl-entry">Klute, F., & Nöllenburg, M. (2018). Minimizing Crossings in Constrained Two-Sided Circular Graph Layouts. In B. Speckmann & C. D. Tóth (Eds.), <i>34th International Symposium on Computational Geometry</i> (pp. 53:1-53:14). LIPICS, Schloss Dagstuhl - Leibniz-Zentrum für Informatik GmbH. https://doi.org/10.4230/LIPIcs.SoCG.2018.53</div>
</div>
-
dc.identifier.isbn
978-3-95977-066-8
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/57526
-
dc.description.abstract
Circular layouts are a popular graph drawing style, where vertices are placed on a circle and edges are drawn as straight chords. Crossing minimization in circular layouts is NP-hard. One way to allow for fewer crossings in practice are two-sided layouts that draw some edges as curves in the exterior of the circle. In fact, one- and two-sided circular layouts are equivalent to one- page and two-page book drawings, i.e., graph layouts with all vertices placed on a line (the spine) and edges drawn in one or two distinct half-planes (the pages) bounded by the spine. In this paper we study the problem of minimizing the crossings for a fixed cyclic vertex order by computing an optimal k-plane set of exteriorly drawn edges for k ≥ 1, extending the previously studied case k = 0. We show that this relates to finding bounded-degree maximum-weight induced subgraphs of circle graphs, which is a graph-theoretic problem of independent interest. We show NP-hardness for arbitrary k, present an efficient algorithm for k = 1, and generalize it to an explicit XP-time algorithm for any fixed k. For the practically interesting case k = 1 we implemented our algorithm and present experimental results that confirm the applicability of our algorithm.
en
dc.language.iso
en
-
dc.publisher
LIPICS, Schloss Dagstuhl - Leibniz-Zentrum für Informatik GmbH
-
dc.subject
Graph Drawing
-
dc.subject
Circular Layouts
-
dc.subject
Crossing Minimization
-
dc.subject
Circle Graphs
-
dc.subject
Bounded-Degree Maximum-Weight Induced Subgraphs
-
dc.title
Minimizing Crossings in Constrained Two-Sided Circular Graph Layouts
en
dc.type
Konferenzbeitrag
de
dc.type
Inproceedings
en
dc.relation.publication
34th International Symposium on Computational Geometry
-
dc.relation.isbn
978-3-95977-066-8
-
dc.relation.issn
1868-8969
-
dc.description.startpage
53:1
-
dc.description.endpage
53:14
-
dc.type.category
Full-Paper Contribution
-
dc.publisher.place
99
-
tuw.booktitle
34th International Symposium on Computational Geometry
-
tuw.peerreviewed
true
-
tuw.relation.publisher
Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik
-
tuw.relation.publisherplace
Dagstuhl
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E192-01 - Forschungsbereich Algorithms and Complexity
-
tuw.publisher.doi
10.4230/LIPIcs.SoCG.2018.53
-
dc.description.numberOfPages
14
-
tuw.event.name
International Symposium on Computational Geometry (SoCG)
en
tuw.event.startdate
11-06-2018
-
tuw.event.enddate
14-06-2018
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Budapest
-
tuw.event.country
HU
-
tuw.event.presenter
Klute, Fabian
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.facultyfocus
Logic and Computation (LC)
de
wb.facultyfocus
Logic and Computation (LC)
en
wb.facultyfocus.faculty
E180
-
wb.presentation.type
science to science/art to art
-
item.languageiso639-1
en
-
item.grantfulltext
restricted
-
item.cerifentitytype
Publications
-
item.openairetype
conference paper
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.fulltext
no Fulltext
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity