<div class="csl-bib-body">
<div class="csl-entry">Fischl, W., Gottlob, G., & Pichler, R. (2018). General and Fractional Hypertree Decompositions: Hard and Easy Cases. In <i>Proceedings of the 37th {ACM} {SIGMOD-SIGACT-SIGAI} Symposium on Principles of Database Systems</i> (pp. 17–32). ACM. https://doi.org/10.1145/3196959.3196962</div>
</div>
-
dc.identifier.isbn
978-1-4503-4706-8
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/57567
-
dc.description.abstract
Hypertree decompositions, as well as the more powerful generalized hypertree decompositions (GHDs), and the yet more general fractional hypertree decompositions (FHD) are hypergraph decomposition methods successfully used for answering conjunctive queries and for the solution of constraint satisfaction problems. Every hypergraph H has a width relative to each of these methods: its hypertree width hw(H), its generalized hypertree width ghw(H), and its fractional hypertree width fhw(H), respectively. It is known that hw(H) ≤ k can be checked in polynomial time for fixed k, while checking ghw(H) ≤ k is NP-complete for k >= 3. The complexity of checking fhw(H) ≤ k for a fixed k has been open for over a decade. We settle this open problem by showing that checking fhw(H) ≤ k is NP-complete, even for k=2. The same construction allows us to prove also the NP-completeness of checking ghw(H) ≤ k for k=2. After proving these results, we identify meaningful restrictions, for which checking for bounded ghw or fhw becomes tractable.
en
dc.description.sponsorship
Fonds zur Förderung der wissenschaftlichen Forschung (FWF)
-
dc.description.sponsorship
Fonds zur Förderung der wissenschaftlichen Forschung (FWF)
-
dc.language.iso
en
-
dc.publisher
ACM
-
dc.title
General and Fractional Hypertree Decompositions: Hard and Easy Cases
en
dc.type
Konferenzbeitrag
de
dc.type
Inproceedings
en
dc.relation.publication
Proceedings of the 37th {ACM} {SIGMOD-SIGACT-SIGAI} Symposium on Principles of Database Systems
-
dc.description.startpage
17
-
dc.description.endpage
32
-
dc.relation.grantno
P25518-N23
-
dc.relation.grantno
P30930-N35
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Proceedings of the 37th {ACM} {SIGMOD-SIGACT-SIGAI} Symposium on Principles of Database Systems
-
tuw.peerreviewed
true
-
tuw.project.title
Fixed-Parameter Tractability in Artificial Intelligence and Reasoning (FAIR)
-
tuw.project.title
HyperTrac: hypergraph Decompositions and Tractability
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E192-02 - Forschungsbereich Databases and Artificial Intelligence
-
tuw.publisher.doi
10.1145/3196959.3196962
-
dc.description.numberOfPages
16
-
tuw.author.orcid
0000-0002-1760-122X
-
tuw.event.name
ACM SIGMOD/PODS International Conference on Management of Data
en
tuw.event.startdate
10-06-2018
-
tuw.event.enddate
15-06-2018
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Houston
-
tuw.event.country
US
-
tuw.event.presenter
Pichler, Reinhard
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.facultyfocus
Logic and Computation (LC)
de
wb.facultyfocus
Logic and Computation (LC)
en
wb.facultyfocus.faculty
E180
-
wb.presentation.type
science to science/art to art
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.languageiso639-1
en
-
item.cerifentitytype
Publications
-
item.openairetype
conference paper
-
crisitem.author.dept
E192-02 - Forschungsbereich Databases and Artificial Intelligence
-
crisitem.author.dept
E192-02 - Forschungsbereich Databases and Artificial Intelligence
-
crisitem.author.dept
E192-02 - Forschungsbereich Databases and Artificial Intelligence
-
crisitem.author.orcid
0000-0002-1760-122X
-
crisitem.author.parentorg
E192 - Institut für Logic and Computation
-
crisitem.author.parentorg
E192 - Institut für Logic and Computation
-
crisitem.author.parentorg
E192 - Institut für Logic and Computation
-
crisitem.project.funder
FWF Fonds zur Förderung der wissenschaftlichen Forschung (FWF)