<div class="csl-bib-body">
<div class="csl-entry">Böck, S., Davies, M., & Knees, P. (2019). Multi-Task Learning of Tempo and Beat: Learning One to Improve the Other. In A. Flexer, G. Peeters, J. Urbano, & A. Volk (Eds.), <i>Proceedings of the 20th International Society for Music Information Retrieval Conference</i> (pp. 486–493). Zenodo. https://doi.org/10.5281/zenodo.3527849</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/58099
-
dc.description.abstract
In this paper, we propose a multi-task learning approach for simultaneous tempo estimation and beat tracking of musical audio. The system shows state-of-the-art performance for both tasks on a wide range of data, but has another fundamental advantage: due to its multi-task nature, it is not only able to exploit the mutual information of both tasks by learning a common, shared representation, but can also improve one by learning only from the other. The multi-task learning is achieved by globally aggregating the skip connections of a beat tracking system built around temporal convolutional networks, and feeding them into a tempo classification layer. The benefit of this approach is investigated by the inclusion of training data for which tempo-only annotations are available, and which is shown to provide improvements in beat tracking accuracy.
en
dc.title
Multi-Task Learning of Tempo and Beat: Learning One to Improve the Other
-
dc.type
Konferenzbeitrag
de
dc.type
Inproceedings
en
dc.relation.publication
Proceedings of the 20th International Society for Music Information Retrieval Conference
-
dc.relation.isbn
978-1-7327299-1-9
-
dc.description.startpage
486
-
dc.description.endpage
493
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Proceedings of the 20th International Society for Music Information Retrieval Conference
-
tuw.peerreviewed
true
-
tuw.relation.publisher
Zenodo
-
tuw.researchTopic.id
I5
-
tuw.researchTopic.id
I4a
-
tuw.researchTopic.name
Visual Computing and Human-Centered Technology
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
20
-
tuw.researchTopic.value
80
-
tuw.publication.orgunit
E194-01 - Forschungsbereich Information und Software Engineering
-
tuw.publisher.doi
10.5281/zenodo.3527849
-
dc.description.numberOfPages
8
-
tuw.event.name
20th International Society for Music Information Retrieval Conference (ISMIR)
-
tuw.event.startdate
04-11-2019
-
tuw.event.enddate
08-11-2019
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Delft
-
tuw.event.country
NL
-
tuw.event.presenter
Böck, Sebastian
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.facultyfocus
Information Systems Engineering (ISE)
de
wb.facultyfocus
Information Systems Engineering (ISE)
en
wb.facultyfocus.faculty
E180
-
wb.presentation.type
science to science/art to art
-
item.grantfulltext
none
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.openairetype
conference paper
-
item.fulltext
no Fulltext
-
crisitem.author.dept
E194-01 - Forschungsbereich Information und Software Engineering
-
crisitem.author.dept
E194-04 - Forschungsbereich E-Commerce
-
crisitem.author.orcid
0000-0003-3906-1292
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering