<div class="csl-bib-body">
<div class="csl-entry">Zügner, D., Holly, S., Ernst, W., Schnitzer, R., & Kozeschnik, E. (2019). Computational analysis of the yield stress of ultra-high strength all-weld metals. In C. Sommitsch, N. Enzinger, & P. Mayr (Eds.), <i>Mathematical Modelling of Weld Phenomena 12</i> (pp. 199–217). Verlag der Technischen Universität Graz. https://doi.org/10.3217/978-3-85125-615-4-13</div>
</div>
-
dc.identifier.isbn
978-3-85125-615-4
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/68078
-
dc.description.abstract
Lightweight constructions providing a high yield stress play a crucial role in transportation systems and steel constructions optimized for low energy consumption. For the fabrication of such components, the development of matching welding consumables is an essential task. In this investigation, the aim is to understand the influence of different alloying elements on the strength of all-weld metal samples of ultra-high strength filler metals with a yield strength of 1100 MPa. In the end, this should provide insight into the operating mechanisms providing the desired strength and make it possible to predict the expected yield stress with reasonable accuracy.
Apart from precipitation and solid solution strengthening, special attention is paid to the contributions of dislocation hardening and grain boundary strengthening, since these are expected to be the major contributors to the overall strength in a predominantly martensitic structure. In order to apply those classical strengthening mechanisms to the specific microstructure of martensite, additional considerations have to be made concerning the effective grain size and initial dislocation density used for calculation. Finally, the developed model is tested and the results are compared with over 90 actually produced and measured alloys.
en
dc.language.iso
en
-
dc.publisher
Verlag der Technischen Universität Graz
-
dc.subject
simulation
-
dc.subject
welding
-
dc.subject
yield-strength
-
dc.title
Computational analysis of the yield stress of ultra-high strength all-weld metals
en
dc.type
Konferenzbeitrag
de
dc.type
Inproceedings
en
dc.relation.publication
Mathematical Modelling of Weld Phenomena 12
-
dc.relation.isbn
978-3-85125-615-4
-
dc.relation.doi
10.3217/978-3-85125-615-4
-
dc.relation.issn
2410-0544
-
dc.description.startpage
199
-
dc.description.endpage
217
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Mathematical Modelling of Weld Phenomena 12
-
tuw.peerreviewed
true
-
tuw.relation.publisher
Verlag der Technischen Universität Graz
-
tuw.researchTopic.id
M8
-
tuw.researchTopic.id
M3
-
tuw.researchTopic.id
C1
-
tuw.researchTopic.name
Structure-Property Relationship
-
tuw.researchTopic.name
Metallic Materials
-
tuw.researchTopic.name
Computational Materials Science
-
tuw.researchTopic.value
20
-
tuw.researchTopic.value
30
-
tuw.researchTopic.value
50
-
tuw.publication.orgunit
E308-03 - Forschungsbereich Werkstofftechnik
-
tuw.publisher.doi
10.3217/978-3-85125-615-4-13
-
dc.description.numberOfPages
19
-
tuw.event.name
12th International Seminar on Numerical Analysis of Weldability
-
tuw.event.startdate
23-09-2018
-
tuw.event.enddate
26-09-2018
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Graz - Castle Seggau
-
tuw.event.country
AT
-
tuw.event.presenter
Zügner, Dominik
-
wb.sciencebranch
Werkstofftechnik
-
wb.sciencebranch
Maschinenbau
-
wb.sciencebranch.oefos
2050
-
wb.sciencebranch.oefos
2030
-
wb.facultyfocus
Numerische Ingenieursmethoden und IT gestütztes Engineering
de
wb.facultyfocus
Numerische Ingenieursmethoden und IT gestütztes Engineering