<div class="csl-bib-body">
<div class="csl-entry">Mang, H. A., Pavlicek, S., & Jia, X. (2016). The buckling sphere: A symbiosis of mechanics and geometry. <i>Computer Methods in Applied Mechanics and Engineering</i>, <i>309</i>, 325–363. https://doi.org/10.1016/j.cma.2016.05.033</div>
</div>
The basis of this work is a novel symbiosis of mechanics of solids and spherical geometry to quantify and illustrate the variation of the “non-membrane” percentage of the strain energy in the prebuckling region of linear elastic beams, arches, plates and shells, and structures assembled of such one-dimensional and two-dimensional members. The zenith angle of an arbitrary point of a specific curve on an octant of the unit sphere, called buckling sphere, is related to this energy percentage. For the limiting case of buckling from a membrane stress state this curve degenerates to a point, characterized by zero values of both spherical coordinates. For all other stress states the azimuth angle increases with the proportionally increasing load. Its magnitude at the stability limit correlates with a global quantity that depends on both the “non-membrane” deformations and the stiffness of the structure at incipient buckling. The azimuth angle is computed with the help of the so-called consistently linearized eigenproblem, which is solved by means of the Finite Element Method. This eigenvalue problem is the basis for a hypothesis for the “non-membrane” percentage of the strain energy. In the theoretical part of the paper, the concept of the buckling sphere is presented. The subsequent numerical investigation consists of four examples, referring to buckling from a membrane stress state, a pure bending stress state, and a general stress state. The practical motive for this research is the intention to investigate the influence of “non-membrane” action just before buckling on the initial postbuckling behavior of elastic structures.
en
dc.description.sponsorship
Austrian Science Fund (FWF)
-
dc.language
English
-
dc.language.iso
en
-
dc.publisher
Elsevier B.V.
-
dc.relation.ispartof
Computer Methods in Applied Mechanics and Engineering
-
dc.rights.uri
http://creativecommons.org/licenses/by-nc-nd/4.0/
-
dc.subject
Buckling sphere
en
dc.subject
Consistently linearized eigenvalue problem
en
dc.subject
Spherical geometry
en
dc.subject
Membrane pole
en
dc.subject
Bending equator
en
dc.title
The buckling sphere: A symbiosis of mechanics and geometry
en
dc.type
Article
en
dc.type
Artikel
de
dc.rights.license
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
en
dc.rights.license
Creative Commons Namensnennung - Nicht kommerziell - Keine Bearbeitungen 4.0 International
de
dc.description.startpage
325
-
dc.description.endpage
363
-
dc.relation.grantno
P24526-N26
-
dc.rights.holder
The Author(s) 2016
-
dc.type.category
Original Research Article
-
tuw.container.volume
309
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
tuw.version
vor
-
dcterms.isPartOf.title
Computer Methods in Applied Mechanics and Engineering
-
tuw.publication.orgunit
E202 - Institut für Mechanik der Werkstoffe und Strukturen
-
tuw.publisher.doi
10.1016/j.cma.2016.05.033
-
dc.identifier.eissn
1879-2138
-
dc.identifier.libraryid
AC15534598
-
dc.identifier.urn
urn:nbn:at:at-ubtuw:3-8008
-
dc.rights.identifier
CC BY-NC-ND 4.0
en
dc.rights.identifier
CC BY-NC-ND 4.0
de
wb.sci
true
-
item.languageiso639-1
en
-
item.openairetype
research article
-
item.grantfulltext
open
-
item.fulltext
with Fulltext
-
item.cerifentitytype
Publications
-
item.mimetype
application/pdf
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.openaccessfulltext
Open Access
-
crisitem.author.dept
E202 - Institut für Mechanik der Werkstoffe und Strukturen
-
crisitem.author.dept
E202 - Institut für Mechanik der Werkstoffe und Strukturen
-
crisitem.author.dept
E202 - Institut für Mechanik der Werkstoffe und Strukturen