DC FieldValueLanguage
dc.contributor.advisorKahl, Gerhard-
dc.contributor.authorKranner, Margit-
dc.date.accessioned2020-06-29T16:08:06Z-
dc.date.issued2018-
dc.date.submitted2018-11-
dc.identifier.urihttps://resolver.obvsg.at/urn:nbn:at:at-ubtuw:1-118357-
dc.identifier.urihttp://hdl.handle.net/20.500.12708/7321-
dc.description.abstractIn this thesis we will discuss the numerical solution of techniques, that allow the calculation of thermodynamic properties and the specific numerical structure of integral equations, describing simple fluids. The calculation is performed by a program, written in FORTRAN. It uses different specific numerical algorithms to solve the Ornstein-Zernike integral equation in combination with a closure relation. The solution leads to the correlation functions, as well as to the pair distribution functions for more component systems. \\ As solutions of the OZ-equations are sometimes required in higher dimensions as well, the code was generalised from the original three-dimensional case to higher (odd) dimensions. To verify the adaptations, the numerical solutions for the special case of a hard-sphere potential in different dimensions were compared to the corresponding analytic hard-sphere solutions, available for the Percus-Yevic closure relation. The program was then applied to a binary, symmetric mixture, where the cross interaction was assumed to be soft. This case is of relevance in investigations of glassy systems.en
dc.format91 Blätter-
dc.languageEnglish-
dc.language.isoen-
dc.subjectintegral-equation theory for liquidsen
dc.subjectthermodynamicsen
dc.titleIntegral-equation approaches in liquid state theory in higher dimensionsen
dc.titleIntegralgleichungsverfahren in der Flüssigkeitstheorie in höheren Dimensionende
dc.typeThesisen
dc.typeHochschulschriftde
dc.publisher.placeWien-
tuw.thesisinformationTechnische Universität Wien-
tuw.publication.orgunitE136 - Institut für Theoretische Physik-
dc.type.qualificationlevelDiploma-
dc.identifier.libraryidAC15213879-
dc.description.numberOfPages91-
dc.identifier.urnurn:nbn:at:at-ubtuw:1-118357-
dc.thesistypeDiplomarbeitde
dc.thesistypeDiploma Thesisen
item.grantfulltextopen-
item.openairetypeThesis-
item.openairetypeHochschulschrift-
item.cerifentitytypePublications-
item.cerifentitytypePublications-
item.fulltextwith Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
Appears in Collections:Thesis

Files in this item:

Show simple item record

Page view(s)

19
checked on Feb 21, 2021

Download(s)

52
checked on Feb 21, 2021

Google ScholarTM

Check


Items in reposiTUm are protected by copyright, with all rights reserved, unless otherwise indicated.