The sensitivity of quartz-enhanced photoacoustic spectroscopy (QEPAS) can be drastically increased using the power enhancement in high-finesse cavities. Here, low noise resonant power enhancement to 6.3 W was achieved in a linear Brewster window cavity by exploiting optical feedback locking of a quantum cascade laser. The high intracavity intensity of up to 73 W mm−2 in between the prongs of a custom tuning fork resulted in strong optical saturation of CO at 4.59 µm. Saturated absorption is discussed theoretically and experimentally for photoacoustic measurements in general and intracavity QEPAS (I-QEPAS) in particular. The saturation intensity of CO’s R9 transition was retrieved from power-dependent I-QEPAS signals. This allowed for sensing CO independently from varying degrees of saturation caused by absorption induced changes of intracavity power. Figures of merit of the I-QEPAS setup for sensing of CO and H2O are compared to standard wavelength modulation QEPAS without cavity enhancement. For H2O, the sensitivity was increased by a factor of 230, practically identical to the power enhancement, while the sensitivity gain for CO detection was limited to 57 by optical saturation.
en
dc.description.sponsorship
Austrian Science Fund (FWF)
-
dc.language
English
-
dc.language.iso
en
-
dc.publisher
SPRINGER HEIDELBERG
-
dc.relation.ispartof
Applied Physics B: Lasers and Optics
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
photoacoustic spectroscopy
en
dc.title
Mid-infrared sensing of CO at saturated absorption conditions using intracavity quartz-enhanced photoacoustic spectroscopy
en
dc.type
Article
en
dc.type
Artikel
de
dc.rights.license
Creative Commons Namensnennung 4.0 International
de
dc.rights.license
Creative Commons Attribution 4.0 International
en
dc.description.startpage
1
-
dc.description.endpage
11
-
dc.relation.grantno
PIR 40-N34
-
dc.rights.holder
The Author(s) 2019
-
dc.type.category
Original Research Article
-
tuw.container.volume
125
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
tuw.version
vor
-
dcterms.isPartOf.title
Applied Physics B: Lasers and Optics
-
tuw.publication.orgunit
E164 - Institut für Chemische Technologien und Analytik
-
tuw.publisher.doi
10.1007/s00340-019-7260-6
-
dc.date.onlinefirst
2019-08
-
dc.identifier.articleid
159
-
dc.identifier.eissn
1432-0649
-
dc.identifier.libraryid
AC15533563
-
dc.description.numberOfPages
11
-
dc.identifier.urn
urn:nbn:at:at-ubtuw:3-7794
-
tuw.author.orcid
0000-0002-9136-6811
-
tuw.author.orcid
0000-0003-0291-487X
-
dc.rights.identifier
CC BY 4.0
de
dc.rights.identifier
CC BY 4.0
en
wb.sci
true
-
item.fulltext
with Fulltext
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.cerifentitytype
Publications
-
item.openairetype
research article
-
item.grantfulltext
open
-
item.openaccessfulltext
Open Access
-
item.languageiso639-1
en
-
crisitem.author.dept
E164-02-1 - Forschungsgruppe Prozessanalytik
-
crisitem.author.dept
E164-02-1 - Forschungsgruppe Prozessanalytik
-
crisitem.author.dept
E164-02-1 - Forschungsgruppe Prozessanalytik
-
crisitem.author.dept
E164-02 - Forschungsbereich Umwelt-, Prozessanalytik und Sensoren
-
crisitem.author.orcid
0000-0002-9136-6811
-
crisitem.author.orcid
0000-0003-3838-5842
-
crisitem.author.parentorg
E164-02 - Forschungsbereich Umwelt-, Prozessanalytik und Sensoren
-
crisitem.author.parentorg
E164-02 - Forschungsbereich Umwelt-, Prozessanalytik und Sensoren
-
crisitem.author.parentorg
E164-02 - Forschungsbereich Umwelt-, Prozessanalytik und Sensoren
-
crisitem.author.parentorg
E164 - Institut für Chemische Technologien und Analytik