<div class="csl-bib-body">
<div class="csl-entry">Pudukotai Dinakarrao, S. M., & Jantsch, A. (2018). ADDHard: Arrhythmia Detection with Digital Hardware by Learning ECG Signal. In <i>Proceedings of the 2018 on Great Lakes Symposium on VLSI</i>. ACM, Austria. ACM Digital Library. https://doi.org/10.1145/3194554.3194647</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/76454
-
dc.description.abstract
Anomaly detection in Electrocardiogram (ECG) signals facilitates the diagnosis of cardiovascular diseases i.e., arrhythmias. Existing methods, although fairly accurate, demand a large number of computational resources. Based on the pre-processing of ECG signal, we present a low-complex digital hardware implementation (ADDHard) for arrhythmia detection. ADDHard has the advantages of low-power consumption and a small foot print. ADDHard is suitable especially for resource constrained systems such as body wearable devices. Its implementation was tested with the MIT-BIH arrhythmia database and achieved an accuracy of 97.28% with a specificity of 98.25% on average.
en
dc.publisher
ACM Digital Library
-
dc.title
ADDHard: Arrhythmia Detection with Digital Hardware by Learning ECG Signal
-
dc.type
Konferenzbeitrag
de
dc.type
Inproceedings
en
dc.relation.publication
Proceedings of the 2018 on Great Lakes Symposium on VLSI
-
dc.relation.isbn
9781450357241
-
dc.relation.doi
10.1145/3194554
-
dc.type.category
Full-Paper Contribution
-
dc.publisher.place
New York
-
tuw.booktitle
Proceedings of the 2018 on Great Lakes Symposium on VLSI
-
tuw.peerreviewed
true
-
tuw.relation.publisher
ACM
-
tuw.relation.publisherplace
New York
-
tuw.researchTopic.id
I2
-
tuw.researchTopic.name
Computer Engineering and Software-Intensive Systems
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E384-02 - Forschungsbereich Systems on Chip
-
tuw.publisher.doi
10.1145/3194554.3194647
-
dc.description.numberOfPages
4
-
tuw.event.name
ACM
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.country
AT
-
wb.sciencebranch
Elektrotechnik, Elektronik, Informationstechnik
-
wb.sciencebranch.oefos
2020
-
wb.facultyfocus
System- und Automatisierungstechnik
de
wb.facultyfocus
System and Automation Engineering
en
wb.facultyfocus.faculty
E350
-
item.openairetype
conference paper
-
item.grantfulltext
restricted
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
crisitem.author.dept
E384 - Institut für Computertechnik
-
crisitem.author.dept
E384-02 - Forschungsbereich Systems on Chip
-
crisitem.author.orcid
0000-0003-2251-0004
-
crisitem.author.parentorg
E350 - Fakultät für Elektrotechnik und Informationstechnik