<div class="csl-bib-body">
<div class="csl-entry">Polly, D. F. (2022). <i>Channel linear Weingarten surfaces in smooth and discrete differential geometry</i> [Dissertation, Technische Universität Wien]. reposiTUm. http://hdl.handle.net/20.500.12708/79046</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/79046
-
dc.description.abstract
We consider channel linear Weingarten surfaces in spaceforms of arbitrary curvature and their discretisation in the sense of integrable discrete differential geometry. We use Lie sphere geometry to unify the different ambient spaces.In the smooth category, we prove that all non-tubular channel linear Weingarten surfaces are rotational within their ambient spaceforms. Further we give explicit parametrisations of all rotational surfaces with constant Gauss curvature in terms of Jacobi elliptic functions. Thus, we obtain a transparent classification of all channel linear Weingarten surfaces in spaceforms with non-negative curvature as well as a large subclass of channel linear Weingarten surfaces in hyperbolic spaceforms up to parallel transformation.We further point out how similar arguments to the ones presented in this text lead to explicit parametrisations of constant mean curvature surfaces.In the discrete category, we advance the theory of the recently defined class of discrete channel surfaces. Further, we prove that all strongly non-tubular discrete channel linear Weingarten surfaces are rotational within their ambient spaceforms. Also we outline how this will lead to a classification of large classes of channel linear Weingarten surfaces, similar to the results of the smooth theory.
en
dc.language
English
-
dc.language.iso
en
-
dc.subject
channel surface
en
dc.subject
linear Weingarten surface
en
dc.subject
discrete differential geometry
en
dc.title
Channel linear Weingarten surfaces in smooth and discrete differential geometry
en
dc.type
Thesis
en
dc.type
Hochschulschrift
de
dc.contributor.affiliation
TU Wien, Österreich
-
dc.publisher.place
Wien
-
tuw.thesisinformation
Technische Universität Wien
-
tuw.publication.orgunit
E104 - Institut für Diskrete Mathematik und Geometrie
-
dc.type.qualificationlevel
Doctoral
-
dc.identifier.libraryid
AC16534642
-
dc.description.numberOfPages
148
-
dc.thesistype
Dissertation
de
dc.thesistype
Dissertation
en
tuw.author.orcid
0000-0002-6396-9121
-
tuw.advisor.staffStatus
staff
-
tuw.advisor.orcid
0000-0001-6773-0399
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_db06
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.languageiso639-1
en
-
item.openairetype
doctoral thesis
-
crisitem.author.dept
E104-03 - Forschungsbereich Differentialgeometrie und geometrische Strukturen
-
crisitem.author.orcid
0000-0002-6396-9121
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie