<div class="csl-bib-body">
<div class="csl-entry">Ortega Moreno, O. A. (2022). The complex plank problem, revisited. <i>Discrete and Computational Geometry</i>, <i>86</i>. https://doi.org/10.1007/s00454-022-00423-7</div>
</div>
-
dc.identifier.issn
0179-5376
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/80401
-
dc.description.abstract
Ball’s complex plank theorem states that if v1,…,vn are unit vectors in Cd, and t1,…,tn are non-negative numbers satisfying ∑nk=1t2k=1, then there exists a unit vector v in Cd for which |⟨vk,v⟩|≥tk for every k. Here we present a streamlined version of Ball’s original proof.
en
dc.description.sponsorship
Fonds zur Förderung der wissenschaftlichen Forschung (FWF)