<div class="csl-bib-body">
<div class="csl-entry">Dabsch, A., Rosenberg, C., Stifter, M., & Keplinger, F. (2017). MEMS cantilever based magnetic field gradient sensor. <i>Journal of Micromechanics and Microengineering</i>. https://doi.org/10.1088/1361-6439/aa654f</div>
</div>
This paper describes major contributions to a MEMS magnetic field gradient sensor. An H-shaped structure supported by four arms with two circuit paths on the surface is designed for measuring two components of the magnetic flux density and one component of the gradient. The structure is produced from silicon wafers by a dry etching process. The gold leads on the surface carry the alternating current which interacts with the magnetic field component perpendicular to the direction of the current. If the excitation frequency is near to a mechanical resonance, vibrations with an amplitude within the range of 1–103 nm are expected. Both theoretical (simulations and analytic calculations) and experimental analysis have been carried out to optimize the structures for different strength of the magnetic gradient. In the same way the impact of the coupling structure on the resonance frequency and of different operating modes to simultaneously measure two components of the flux density were tested. For measuring the local gradient of the flux density the structure was operated at the first symmetrical and the first anti-symmetrical mode. Depending on the design, flux densities of approximately 2.5 µT and gradients starting from 1 µT mm−1 can be measured.
en
dc.language
English
-
dc.language.iso
en
-
dc.publisher
IOP Publishing Ltd
-
dc.relation.ispartof
Journal of Micromechanics and Microengineering
-
dc.rights.uri
http://creativecommons.org/licenses/by/3.0/
-
dc.subject
cantilever
en
dc.subject
gradient sensors
en
dc.subject
magnetic field
en
dc.subject
MEMS
en
dc.title
MEMS cantilever based magnetic field gradient sensor
en
dc.type
Article
en
dc.type
Artikel
de
dc.rights.license
Creative Commons Attribution 3.0 Unported
en
dc.rights.license
Creative Commons Namensnennung 3.0 Unported
de
dcterms.dateSubmitted
2016-12-14
-
dc.rights.holder
The Author(s) 2017
-
dc.type.category
Original Research Article
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
tuw.version
vor
-
dcterms.isPartOf.title
Journal of Micromechanics and Microengineering
-
tuw.publication.orgunit
E366 - Institut für Sensor- und Aktuatorsysteme
-
tuw.publisher.doi
10.1088/1361-6439/aa654f
-
dc.date.onlinefirst
2017-04-05
-
dc.identifier.eissn
1361-6439
-
dc.identifier.libraryid
AC15591251
-
dc.identifier.urn
urn:nbn:at:at-ubtuw:3-8608
-
dc.rights.identifier
CC BY 3.0
en
dc.rights.identifier
CC BY 3.0
de
wb.sci
true
-
item.languageiso639-1
en
-
item.openairetype
research article
-
item.grantfulltext
open
-
item.fulltext
with Fulltext
-
item.cerifentitytype
Publications
-
item.mimetype
application/pdf
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.openaccessfulltext
Open Access
-
crisitem.author.dept
E366 - Institut für Sensor- und Aktuatorsysteme
-
crisitem.author.dept
E370 - Institut für Energiesysteme und Elektrische Antriebe
-
crisitem.author.dept
E366 - Institut für Sensor- und Aktuatorsysteme
-
crisitem.author.dept
E366-01 - Forschungsbereich Mikro- und Nanosensorik
-
crisitem.author.parentorg
E350 - Fakultät für Elektrotechnik und Informationstechnik
-
crisitem.author.parentorg
E350 - Fakultät für Elektrotechnik und Informationstechnik
-
crisitem.author.parentorg
E350 - Fakultät für Elektrotechnik und Informationstechnik