<div class="csl-bib-body">
<div class="csl-entry">Gavioli, C., & Krejci, P. (2022). Phase transitions in porous media. <i>Nonlinear Differential Equations and Applications</i>, <i>29</i>, Article 72. https://doi.org/10.1007/s00030-022-00805-z</div>
</div>
-
dc.identifier.issn
1021-9722
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/80604
-
dc.description.abstract
The full quasistatic thermomechanical system of PDEs, describing water diffusion with the possibility of freezing and melting in a visco-elasto-plastic porous solid, is studied in detail under the hypothesis that the pressure-saturation hysteresis relation is given in terms of the Preisach hysteresis operator. The resulting system of balance equations for mass, momentum, and energy coupled with the phase dynamics equation is shown to admit a global solution under general assumptions on the data.
en
dc.language.iso
en
-
dc.publisher
SPRINGER INT PUBL AG
-
dc.relation.ispartof
Nonlinear Differential Equations and Applications
-
dc.subject
Porous media
en
dc.subject
Phase transitions
en
dc.subject
Hysteresis
en
dc.title
Phase transitions in porous media
en
dc.type
Article
en
dc.type
Artikel
de
dc.contributor.affiliation
Faculty of Civil Engeneering, Czech Technical University, Praha