<div class="csl-bib-body">
<div class="csl-entry">Chajda, I., Fazio, D., Länger, H., Ledda, A., & Paseka, J. (2022). Algebraic properties of paraorthomodular posets. <i>Logic Journal of the Interest Group in Pure and Applied Logic (IGPL)</i>, <i>30</i>(5), 840–869. https://doi.org/10.1093/jigpal/jzab024</div>
</div>
-
dc.identifier.issn
1367-0751
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/81170
-
dc.description.abstract
Paraorthomodular posets are bounded partially ordered sets with an antitone involution induced by quantum structures arising from the logico-algebraic approach to quantum mechanics. The aim of the present work is starting a systematic inquiry into paraorthomodular posets theory both from algebraic and order-theoretic perspectives. On the one hand, we show that paraorthomodular posets are amenable of an algebraic treatment by means of a smooth representation in terms of bounded directoids with antitone involution. On the other, we investigate their order-theoretical features in terms of forbidden configurations. Moreover, sufficient and necessary conditions characterizing bounded posets with an antitone involution whose Dedekind–MacNeille completion is paraorthomodular are provided.
en
dc.language.iso
en
-
dc.publisher
OXFORD UNIV PRESS
-
dc.relation.ispartof
Logic Journal of the Interest Group in Pure and Applied Logic (IGPL)
-
dc.subject
poset with antitone involution
en
dc.subject
orthomodular lattice
en
dc.subject
orthomodular poset
en
dc.subject
paraorthomodular lattice
en
dc.subject
paraorthomodular poset
en
dc.subject
orthoalgebra
en
dc.subject
effect algebra
en
dc.subject
commutative directoid
en
dc.subject
D-continuous poset
en
dc.subject
Dedekind-MacNeille completion
en
dc.title
Algebraic properties of paraorthomodular posets
en
dc.type
Article
en
dc.type
Artikel
de
dc.contributor.affiliation
Palacky University, Faculty of Sciences
-
dc.contributor.affiliation
Masarykova Univerzita
-
dc.description.startpage
840
-
dc.description.endpage
869
-
dcterms.dateSubmitted
2020-11-26
-
dc.type.category
Original Research Article
-
tuw.container.volume
30
-
tuw.container.issue
5
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
X1
-
tuw.researchTopic.name
Beyond TUW-research foci
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
Logic Journal of the Interest Group in Pure and Applied Logic (IGPL)
-
tuw.publication.orgunit
E104 - Institut für Diskrete Mathematik und Geometrie
-
tuw.publisher.doi
10.1093/jigpal/jzab024
-
dc.identifier.eissn
1368-9894
-
dc.description.numberOfPages
30
-
tuw.author.orcid
0000-0003-3840-3879
-
tuw.author.orcid
0000-0003-2569-7214
-
tuw.author.orcid
0000-0001-6658-6647
-
dc.description.sponsorshipexternal
Austrian Science Fund
-
dc.description.sponsorshipexternal
OeAD GmbH
-
dc.relation.grantnoexternal
I 4579-N
-
dc.relation.grantnoexternal
CZ 02/2019
-
wb.sci
true
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
100
-
item.openairetype
Article
-
item.openairetype
Artikel
-
item.grantfulltext
restricted
-
item.cerifentitytype
Publications
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cf
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cf
-
item.fulltext
no Fulltext
-
crisitem.author.dept
Palacky University, Faculty of Sciences
-
crisitem.author.dept
E104 - Institut für Diskrete Mathematik und Geometrie