DC FieldValueLanguage
dc.contributor.authorCalatroni, S.-
dc.contributor.authorBellingeri, E.-
dc.contributor.authorFerdeghini, C.-
dc.contributor.authorPutti, M.-
dc.contributor.authorVaglio, R.-
dc.contributor.authorBaumgartner, T.-
dc.contributor.authorEisterer, M.-
dc.date.accessioned2020-06-27T18:00:23Z-
dc.date.issued2017-
dc.identifier.issn1361-6668-
dc.identifier.urihttps://resolver.obvsg.at/urn:nbn:at:at-ubtuw:3-8620-
dc.identifier.urihttp://hdl.handle.net/20.500.12708/811-
dc.description.abstractCERN has recently started a design study for a possible next-generation high-energy hadron–hadron collider (Future Circular Collider—FCC-hh). The FCC-hh study calls for an unprecedented center-of-mass collision energy of 100 TeV, achievable by colliding counter-rotating proton beams with an energy of 50 TeV steered in a 100 km circumference tunnel by superconducting magnets which produce a dipole field of 16 T. The beams emit synchrotron radiation at high power levels, which, to optimize cryogenic efficiency, is absorbed by a beam-facing screen, coated with copper, and held at 50 K in the current design. The surface impedance of this screen has a strong impact on beam stability, and copper at 50 K allows for a limited beam stability margin only. This motivates the exploration of whether high-temperature superconductors (HTS), the only known materials possibly having a surface impedance lower than copper under the required operating conditions, would represent a viable alternative. This paper summarizes the FCC-hh requirements and focuses on identifying the best possible HTS material for this purpose. It reviews in particular the properties of Tl-based HTS, and discusses the consequent motivation for developing a deposition process for such compounds, which should be scalable to the size of the FCC components.en
dc.languageEnglish-
dc.language.isoen-
dc.publisherIOP-
dc.relation.ispartofSuperconductor Science and Technology-
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/-
dc.subjectFCCen
dc.subjectbeam screenen
dc.subjectHTS coatingen
dc.subjectthalliumen
dc.subjectTl-1223en
dc.titleThallium-based high-temperature superconductors for beam impedance mitigation in the Future Circular Collideren
dc.typeArticleen
dc.typeArtikelde
dc.rights.holderThe Author(s) 2017-
dc.type.categoryResearch Articleen
dc.type.categoryForschungsartikelde
tuw.versionvor-
dcterms.isPartOf.titleSuperconductor Science and Technology-
tuw.publication.orgunitE141 - Atominstitut-
tuw.publisher.doi10.1088/1361-6668/aa6bd0-
dc.identifier.libraryidAC15593130-
dc.identifier.urnurn:nbn:at:at-ubtuw:3-8620-
dc.rights.identifierCC BY 3.0-
item.grantfulltextopen-
item.cerifentitytypePublications-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairetypeArticle-
item.openairetypeArtikel-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextwith Fulltext-
Appears in Collections:Article

Files in this item:

Show simple item record

Page view(s)

40
checked on May 6, 2021

Download(s)

34
checked on May 6, 2021

Google ScholarTM

Check


This item is licensed under a Creative Commons License Creative Commons