<div class="csl-bib-body">
<div class="csl-entry">Mallinger, B. (2014). <i>Interpolation in first-order logic with equality</i> [Diploma Thesis, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2014.24329</div>
</div>
-
dc.identifier.uri
https://doi.org/10.34726/hss.2014.24329
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/8164
-
dc.description
Abweichender Titel laut Übersetzung der Verfasserin/des Verfassers
-
dc.description
Zsfassung in dt. Sprache
-
dc.description.abstract
Craig's interpolation theorem is a long known basic result of mathematical logic. Interpolants lay bare certain logical relations between formulas or sets of formulas in a concise way and can often be calculated efficiently from proofs of these relations. Leveraging the tremendous progress of automatic deduction systems in the last decades, obtaining the required proofs is feasible. This enables real world applications for instance in the area of software verification. For practical applicability, interpolation is often studied in relatively weak formalisms such as propositional logic. This thesis however aims at giving a comprehensive account of existing techniques and results with respect to unrestricted classical first-order logic with equality. It is structured into three parts: First, we present Craig's initial proof of the interpolation theorem by reduction to first-order logic without equality and function symbols. Due to the inherent overhead, this approach only gives rise to an impractical algorithm for interpolant extraction. Second, a constructive proof by Huang is introduced in slightly improved form. It employs direct interpolant extraction from resolution proofs in two phases and thereby shows that even in full first-order logic with equality, interpolants can efficiently be calculated. Moreover, we present an analysis of the number of quantifier alternations of the interpolants produced by this algorithm. We additionally propose a novel approach which combines the two phases of Huang's algorithm and thereby allows for creating non-prenex interpolants. Third, we give a semantic perspective on interpolation in the form of a model-theoretic proof based on Robinson's joint consistency theorem. This illustrates the similarities and differences between the proof-theoretic and the model-theoretic view on interpolation.
en
dc.language
English
-
dc.language.iso
en
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
Craig Interpolation
de
dc.subject
Prädikatenlogik
de
dc.subject
Interpolantenextraktion
de
dc.subject
Craig Interpolation
en
dc.subject
First-Order Logic
en
dc.subject
Interpolant Extraction
en
dc.title
Interpolation in first-order logic with equality
en
dc.title.alternative
Interpolation in der Prädikatenlogik mit Gleichheit
de
dc.type
Thesis
en
dc.type
Hochschulschrift
de
dc.rights.license
In Copyright
en
dc.rights.license
Urheberrechtsschutz
de
dc.identifier.doi
10.34726/hss.2014.24329
-
dc.contributor.affiliation
TU Wien, Österreich
-
dc.rights.holder
Bernhard Mallinger
-
tuw.version
vor
-
tuw.thesisinformation
Technische Universität Wien
-
tuw.publication.orgunit
E104 - Institut für Diskrete Mathematik und Geometrie
-
dc.type.qualificationlevel
Diploma
-
dc.identifier.libraryid
AC12110884
-
dc.description.numberOfPages
87
-
dc.identifier.urn
urn:nbn:at:at-ubtuw:1-65426
-
dc.thesistype
Diplomarbeit
de
dc.thesistype
Diploma Thesis
en
dc.rights.identifier
In Copyright
en
dc.rights.identifier
Urheberrechtsschutz
de
tuw.advisor.staffStatus
staff
-
tuw.advisor.orcid
0000-0002-6461-5982
-
item.languageiso639-1
en
-
item.grantfulltext
open
-
item.cerifentitytype
Publications
-
item.openairetype
master thesis
-
item.openairecristype
http://purl.org/coar/resource_type/c_bdcc
-
item.fulltext
with Fulltext
-
item.mimetype
application/pdf
-
item.openaccessfulltext
Open Access
-
crisitem.author.dept
E104 - Institut für Diskrete Mathematik und Geometrie