DC FieldValueLanguage
dc.contributor.advisorKaltenbäck, Michael-
dc.contributor.authorWess, Markus-
dc.date.accessioned2020-06-29T20:24:23Z-
dc.date.issued2014-
dc.date.submitted2014-10-
dc.identifier.urihttps://resolver.obvsg.at/urn:nbn:at:at-ubtuw:1-76521-
dc.identifier.urihttp://hdl.handle.net/20.500.12708/8420-
dc.descriptionAbweichender Titel laut Übersetzung der Verfasserin/des Verfassers-
dc.description.abstractThis thesis engages in the study of the composition operator on the Dirichlet space and generalized Dirichlet spaces. It contains an introduction to the afore mentioned spaces and the composition of formal power series. Further a proof of the Littlewood subordination principle for the Dirichlet space and generalized Dirichlet spaces is presented. Finally a proof of de Branges Theorem is given.en
dc.format63 Bl.-
dc.languageEnglish-
dc.language.isoen-
dc.subjectSchlichte Funktionende
dc.subjectKrein Räumede
dc.subjectUnivalent Functionsen
dc.subjectKrein Spacesen
dc.titleA characterization of univalent functions on the complex unit disc by indefinite inner product spacesen
dc.title.alternativeCharakterisierung univalenter Funktionen auf der Einheitskreisscheibe durch indefinite Skalarprodukträumede
dc.typeThesisen
dc.typeHochschulschriftde
tuw.publication.orgunitE101 - Institut für Analysis und Scientific Computing-
dc.type.qualificationlevelDiploma-
dc.identifier.libraryidAC12072499-
dc.description.numberOfPages63-
dc.identifier.urnurn:nbn:at:at-ubtuw:1-76521-
dc.thesistypeDiplomarbeitde
dc.thesistypeDiploma Thesisen
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis-
item.openairetypeHochschulschrift-
item.grantfulltextopen-
item.openaccessfulltextOpen Access-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.cerifentitytypePublications-
item.fulltextwith Fulltext-
Appears in Collections:Thesis

Files in this item:


Page view(s)

9
checked on Aug 16, 2021

Download(s)

55
checked on Aug 16, 2021

Google ScholarTM

Check


Items in reposiTUm are protected by copyright, with all rights reserved, unless otherwise indicated.