<div class="csl-bib-body">
<div class="csl-entry">Peitl, T., Slivovsky, F., & Szeider, S. (2017). Dependency Learning for QBF. In S. Gaspers & T. Walsh (Eds.), <i>Theory and Applications of Satisfiability Testing – SAT 2017 : 20th International Conference, Melbourne, VIC, Australia, August 28 – September 1, 2017, Proceedings</i>. Cham. https://doi.org/10.1007/978-3-319-66263-3_19</div>
</div>
The final publication is available via <a href="https://doi.org/10.1007/978-3-319-66263-3_19" target="_blank">https://doi.org/10.1007/978-3-319-66263-3_19</a>.
-
dc.description.abstract
Quantified Boolean Formulas (QBFs) can be used to succinctly encode problems from domains such as formal verification, planning, and synthesis. One of the main approaches to QBF solving is Quantified Conflict Driven Clause Learning (QCDCL). By default, QCDCL assigns variables in the order of their appearance in the quantifier prefix so as to account for dependencies among variables. Dependency schemes can be used to relax this restriction and exploit independence among variables in certain cases, but only at the cost of nontrivial interferences with the proof system underlying QCDCL. We propose a new technique for exploiting variable independence within QCDCL that allows solvers to learn variable dependencies on the fly. The resulting version of QCDCL enjoys improved propagation and increased flexibility in choosing variables for branching while retaining ordinary (long-distance) Q-resolution as its underlying proof system. In experiments on standard benchmark sets, an implementation of this algorithm shows performance comparable to state-of-the-art QBF solvers.
en
dc.description.sponsorship
Austrian Science Funds (FWF)
-
dc.description.sponsorship
Austrian Science Funds (FWF)
-
dc.language
English
-
dc.language.iso
en
-
dc.publisher
Cham
-
dc.relation.ispartofseries
Lecture Notes in Computer Science
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
Quantified Boolean Formulas
en
dc.subject
Quantified Conflict Driven Clause Learning
en
dc.subject
Variable Dependencies
en
dc.title
Dependency Learning for QBF
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.rights.license
Urheberrechtsschutz
de
dc.rights.license
In Copyright
en
dc.relation.isbn
9783319662633
-
dc.relation.doi
10.1007/978-3-319-66263-3
-
dc.relation.issn
0302-9743
-
dc.relation.grantno
P27721
-
dc.relation.grantno
W1255-N23
-
dc.rights.holder
Springer International Publishing AG 2017
-
dc.type.category
Full-Paper Contribution
-
dc.relation.eissn
1611-3349
-
tuw.booktitle
Theory and Applications of Satisfiability Testing – SAT 2017 : 20th International Conference, Melbourne, VIC, Australia, August 28 – September 1, 2017, Proceedings
-
tuw.container.volume
10491
-
tuw.book.ispartofseries
Lecture Notes in Computer Science
-
tuw.relation.publisher
Springer Cham
-
tuw.version
am
-
tuw.publication.orgunit
E192 - Institut für Logic and Computation
-
tuw.publisher.doi
10.1007/978-3-319-66263-3_19
-
dc.identifier.libraryid
AC15058947
-
dc.description.numberOfPages
17
-
dc.identifier.urn
urn:nbn:at:at-ubtuw:3-3440
-
tuw.author.orcid
0000-0001-7799-1568
-
tuw.author.orcid
0000-0001-8994-1656
-
dc.rights.identifier
Urheberrechtsschutz
de
dc.rights.identifier
In Copyright
en
tuw.event.name
SAT: International Conference on Theory and Applications of Satisfiability Testing 2017
-
tuw.event.startdate
28-08-2017
-
tuw.event.enddate
01-09-2017
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Melbourne
-
tuw.event.country
AU
-
tuw.event.presenter
Peitl, Tomáš
-
item.grantfulltext
open
-
item.openairetype
conference paper
-
item.fulltext
with Fulltext
-
item.languageiso639-1
en
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.openaccessfulltext
Open Access
-
item.cerifentitytype
Publications
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity