<div class="csl-bib-body">
<div class="csl-entry">Eller, L., Siafara, L. C., & Sauter, T. (2018). Adaptive control for building energy management using reinforcement learning. In <i>2018 IEEE International Conference on Industrial Technology (ICIT)</i> (pp. 1562–1567). IEEE. https://doi.org/10.1109/icit.2018.8352414</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/91125
-
dc.description.abstract
Efficient energy management of building operation shall consider the individual and time variant characteristics of the building and its systems to maximize the potential energy savings without compromising the comfort level of occupants. Model-free control approaches, such as Reinforcement Learning, process building operation data to find control actions to operate the building systems while integrating seamlessly into their decisions changes in the building dynamics. These methods, however, do not scale well to complex problems due to the curse of dimensionality, which limits their practical applicability. To address the state explosion problem we propose a Reinforcement Learning controller for a two zone building model that gets state approximation inputs from an Artificial Neural Network. The results show that the system is able to maintain comfort levels while achieving significant energy gains by finding untapped potential for energy performance improvements.
en
dc.language.iso
en
-
dc.subject
Artificial Neural Networks
-
dc.subject
Reinforcement Learning
-
dc.subject
Building Automation Systems
-
dc.subject
Adaptive Control
-
dc.title
Adaptive control for building energy management using reinforcement learning
en
dc.type
Konferenzbeitrag
de
dc.type
Inproceedings
en
dc.relation.publication
2018 IEEE International Conference on Industrial Technology (ICIT)
-
dc.relation.isbn
978-1-5090-5950-8
-
dc.relation.doi
10.1109/ICIT39549.2018
-
dc.description.startpage
1562
-
dc.description.endpage
1567
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
2018 IEEE International Conference on Industrial Technology (ICIT)
-
tuw.relation.publisher
IEEE
-
tuw.publication.orgunit
E384 - Institut für Computertechnik
-
tuw.publication.orgunit
E384-01 - Forschungsbereich Software-intensive Systems
-
tuw.publisher.doi
10.1109/icit.2018.8352414
-
dc.description.numberOfPages
6
-
tuw.event.name
2018 IEEE International Conference on Industrial Technology (ICIT)
-
tuw.event.startdate
20-02-2018
-
tuw.event.enddate
22-02-2018
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Lyon
-
tuw.event.country
FR
-
tuw.event.presenter
Eller, Lukas
-
wb.sciencebranch
Elektrotechnik, Elektronik, Informationstechnik
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
2020
-
wb.sciencebranch.oefos
1020
-
wb.facultyfocus
System- und Automatisierungstechnik
de
wb.facultyfocus
System and Automation Engineering
en
wb.facultyfocus.faculty
E350
-
item.languageiso639-1
en
-
item.openairetype
conference paper
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
crisitem.author.dept
E384 - Institut für Computertechnik
-
crisitem.author.dept
E384 - Institut für Computertechnik
-
crisitem.author.orcid
0000-0003-1559-8394
-
crisitem.author.parentorg
E350 - Fakultät für Elektrotechnik und Informationstechnik
-
crisitem.author.parentorg
E350 - Fakultät für Elektrotechnik und Informationstechnik