DC Field | Value | Language |
---|---|---|
dc.contributor.advisor | Drmota, Michael | - |
dc.contributor.author | Klausner, Lukas Daniel | - |
dc.date.accessioned | 2020-06-29T23:54:41Z | - |
dc.date.issued | 2011 | - |
dc.date.submitted | 2011-08 | - |
dc.identifier.uri | https://resolver.obvsg.at/urn:nbn:at:at-ubtuw:1-44254 | - |
dc.identifier.uri | http://hdl.handle.net/20.500.12708/9238 | - |
dc.description.abstract | Die Arbeit beschäftigt sich mit dem Konzept von Hopf-Algebren, insbesondere im Zusammenhang mit kombinatorischen Strukturen.<br />Zunächst werden Moduln, das Tensor-Produkt und Algebren vorgestellt.<br />Dann werden die grundlegenden Begriffe und Eigenschaften von Ko- und Bialgebren sowie von Hopf-Algebren angegeben und abgeleitet.<br />Den Hauptteil der Arbeit bilden die Beziehungen zwischen kombinatorischen Objekten und Hopf-Algebren. Vertiefend behandelt werden einerseits Komposition und Zerlegung von kombinatorischen Objekten, andererseits Inzidenz-Koalgebren und binomielle Koalgebren und deren Zusammenhang mit binomiellen Polynomfamilien und dem Umbralkalkül.<br /> | de |
dc.description.abstract | The thesis discusses the concept of Hopf algebras, especially in connection with combinatorial structures.<br />In the first part, modules, the tensor product and algebras are introduced; then the most important terms and properties of co- and bialgebras as well as Hopf algebras are presented and deduced.<br />The main part of the thesis are the relations between combinatorial objects and Hopf algebras. Discussed in greater detail are composition and decomposition of combinatorial objects as well as incidence coalgebras and binomial coalgebras and their connection with polynomial sequences of binomial type and the umbral calculus.<br /> | en |
dc.format | IV, 89 S. | - |
dc.language | English | - |
dc.language.iso | en | - |
dc.subject | Algebra | de |
dc.subject | Koalgebra | de |
dc.subject | Bialgebra | de |
dc.subject | Hopf-Algebra | de |
dc.subject | Antipode | de |
dc.subject | Diskrete Mathematik | de |
dc.subject | Graphentheorie | de |
dc.subject | Kombinatorik | de |
dc.subject | algebra | en |
dc.subject | coalgebra | en |
dc.subject | bialgebra | en |
dc.subject | Hopf algebra | en |
dc.subject | antipode | en |
dc.subject | discrete mathematics | en |
dc.subject | graph theory | en |
dc.subject | combinatorics | en |
dc.title | Coalgebras, Hopf algebras and combinatorics | en |
dc.type | Thesis | en |
dc.type | Hochschulschrift | de |
tuw.publication.orgunit | E104 - Institut für Diskrete Mathematik und Geometrie | - |
dc.type.qualificationlevel | Diploma | - |
dc.identifier.libraryid | AC07811178 | - |
dc.description.numberOfPages | 89 | - |
dc.identifier.urn | urn:nbn:at:at-ubtuw:1-44254 | - |
dc.thesistype | Diplomarbeit | de |
dc.thesistype | Diploma Thesis | en |
item.languageiso639-1 | en | - |
item.openairetype | Thesis | - |
item.openairetype | Hochschulschrift | - |
item.fulltext | with Fulltext | - |
item.cerifentitytype | Publications | - |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.grantfulltext | open | - |
Appears in Collections: | Thesis |
Files in this item:
File | Description | Size | Format | |
---|---|---|---|---|
Klausner Lukas Daniel - 2011 - Coalgebras Hopf algebras and combinatorics.pdf | 584.41 kB | Adobe PDF | ![]() View/Open |
Page view(s)
13
checked on Apr 14, 2021
Download(s)
67
checked on Apr 14, 2021

Google ScholarTM
Check
Items in reposiTUm are protected by copyright, with all rights reserved, unless otherwise indicated.