dc.description.abstract
Bioprinting is a process based on additive manufacturing from materials containing living cells. These materials, often referred to as bioinks, are based on cytocompatible hydrogel precursor formulations, which gel in a manner compatible with different 3D bioprinting approaches [1]. Among the most widespread bioprinting technologies are methods based on extrusion and ink-jet material deposition. The achievable spatial resolution is therefore in the range of tens of micrometers, limited by intrinsic properties of these approaches. In this context, multiphoton processing is an outstanding approach as it offers spatial resolution unmatched by other 3D printing methods, while providing a possibility to produce structures in the presence of living cells [2-3]. Multiphoton processing is also fundamentally different in that it does not necessarily rely on material deposition. 3D printing of cell-containing hydrogel structures with high spatial resolution opens exciting perspectives for the engineering of 3D biomimetic cell culture matrices. Development of cell compatible and photopolymerizable hydrogels is an important step towards the latter goal [4]. Current challenges include possible cell damage, resulting from generation of free radicals, and necessity for faster processing [5]. In this contribution, the recent progress on multiphoton processing of cell-containing hydrogel constructs is presented. Our results indicate the general practicability of this approach for fabrication of 3D cell-containing structures. The further development of the multiphoton processing techniques will facilitate the realization of elegant biological in vitro experiments, helping to elucidate biomimetic aspects of cell interaction with the surrounding environment.
[1] K. Hölzl, S. Lin, L. Tytgat, S. Van Vlierberghe, L. Gu, A. Ovsianikov, Bioink properties before, during and after 3D bioprinting, Biofabrication 8 (3), (2016) [doi: 10.1088/1758-5090/8/3/032002]
[2] A. Ovsianikov, V. Mironov, J. Stampf, and R. Liska, Engineering 3D cell-culture matrices: multiphoton processing technologies for biological and tissue engineering applications, Expert Rev. Med. Devices 9(6), 613-633 (2012) [doi:10.1586/erd.12.48]
[3] Multiphoton Lithography: Techniques, Materials, and Applications, J. Stampfl, R. Liska, A. Ovsianikov (Eds.) John Wiley & Sons (2016), [ISBN: 978-3-527-33717-0]
[4] X.-H. Qin, A Ovsianikov, J Stampfl, R Liska, Additive manufacturing of photosensitive hydrogels for tissue engineering applications, BioNanoMaterials 15 (3-4), 49-70 (2015) [doi: 10.1515/bnm-2014-0008]
[5] A. Ovsianikov, S. Mühleder, J. Torgersen, Z. Li, X.-H. Qin, S. Van Vlierberghe, P. Dubruel, W. Holnthoner, H. Redl, R. Liska, and J. Stampfl, Laser Photofabrication of Cell-Containing Hydrogel Constructs, Langmuir, 131010115717001 (2013) [doi:10.1021/la402346z]
en