<div class="csl-bib-body">
<div class="csl-entry">Kovacs, K., Ansari, F., Geisert, C., Uhlmann, E., Glawar, R., & Sihn, W. (2018). A Process Model for Enhancing Digital Assistance in Knowledge-Based Maintenance. In J. Beyerer, C. Kühnert, & O. Niggemann (Eds.), <i>Machine Learning for Cyber Physical Systems</i> (pp. 87–96). Springer. https://doi.org/10.1007/978-3-662-58485-9_10</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/95072
-
dc.description.abstract
Digital transformation and evolution of integrated computational and visualisation
technologies lead to new opportunities for reinforcing knowledge-based
maintenance through collection, processing and provision of actionable information
and recommendations for maintenance operators. Providing actionable information regarding
both corrective and preventive maintenance activities at the right time may lead
to reduce human failure and improve overall efficiency within maintenance processes.
Selecting appropriate digital assistance systems (DAS), however, highly depends on
hardware and IT infrastructure, software and interfaces as well as information provision
methods such as visualization. The selection procedures can be challenging due to the
wide range of services and products available on the market. In particular, underlying
machine learning algorithms deployed by each product could provide certain level of
intelligence and ultimately could transform diagnostic maintenance capabilities into
predictive and prescriptive maintenance. This paper proposes a process-based model to
facilitate the selection of suitable DAS for supporting maintenance operations in manufacturing
industries. This solution is employed for a structured requirement elicitation
from various application domains and ultimately mapping the requirements to existing
digital assistance solutions. Using the proposed approach, a (combination of) digital
assistance system is selected and linked to maintenance activities. For this purpose, we
gain benefit from an in-house process modeling tool utilized for identifying and relating
sequence of maintenance activities. Finally, we collect feedback through employing the
selected digital assistance system to improve the quality of recommendations and to
identify the strengths and weaknesses of each system in association to practical usecases
from TU Wien Pilot-Factory Industry 4.0.
en
dc.language.iso
en
-
dc.relation.ispartofseries
Technologien für die intelligente Automation
-
dc.subject
Process Model
-
dc.subject
Maintenance
-
dc.subject
Digital Assistance Systems
-
dc.subject
Industry 4.0.
-
dc.title
A Process Model for Enhancing Digital Assistance in Knowledge-Based Maintenance
en
dc.type
Konferenzbeitrag
de
dc.type
Inproceedings
en
dc.relation.publication
Machine Learning for Cyber Physical Systems
-
dc.relation.isbn
978-3-662-58484-2
-
dc.relation.doi
10.1007/978-3-662-58485-9
-
dc.relation.issn
2522-8579
-
dc.description.startpage
87
-
dc.description.endpage
96
-
dc.type.category
Full-Paper Contribution
-
dc.relation.eissn
2522-8587
-
tuw.booktitle
Machine Learning for Cyber Physical Systems
-
tuw.relation.publisher
Springer
-
tuw.relation.publisherplace
Vieweg Berlin, Heidelberg
-
tuw.publication.orgunit
E330-02-1 - Forschungsgruppe Smart and Knowledge Based Maintenance
-
tuw.publication.orgunit
E330-02 - Forschungsbereich Betriebstechnik, Systemplanung und Facility Management
-
tuw.publisher.doi
10.1007/978-3-662-58485-9_10
-
dc.description.numberOfPages
10
-
tuw.event.name
ML4CPS 2018 - Machine Learning for Cyber Physical Systems
en
tuw.event.startdate
23-10-2018
-
tuw.event.enddate
24-10-2018
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Karlsruhe
-
tuw.event.country
DE
-
tuw.event.presenter
Kovacs, Klaudia
-
wb.sciencebranch
Wirtschaftswissenschaften
-
wb.sciencebranch.oefos
5020
-
wb.facultyfocus
Außerhalb der primären Forschungsgebiete der Fakultät
de
wb.facultyfocus
Outside the Faculty's primary research activities
en
item.languageiso639-1
en
-
item.openairetype
conference paper
-
item.grantfulltext
restricted
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
crisitem.author.dept
E330 - Institut für Managementwissenschaften
-
crisitem.author.dept
E330-06 - Forschungsbereich Produktions- und Instandhaltungsmanagement
-
crisitem.author.dept
E330 - Institut für Managementwissenschaften
-
crisitem.author.dept
E330 - Institut für Managementwissenschaften
-
crisitem.author.orcid
0000-0002-2705-0396
-
crisitem.author.parentorg
E300 - Fakultät für Maschinenwesen und Betriebswissenschaften
-
crisitem.author.parentorg
E330 - Institut für Managementwissenschaften
-
crisitem.author.parentorg
E300 - Fakultät für Maschinenwesen und Betriebswissenschaften
-
crisitem.author.parentorg
E300 - Fakultät für Maschinenwesen und Betriebswissenschaften