<div class="csl-bib-body">
<div class="csl-entry">Ljubić, I. (2004). <i>Exact and memetic algorithms for two network design problems</i> [Dissertation, Technische Universität Wien]. reposiTUm. https://resolver.obvsg.at/urn:nbn:at:at-ubtuw:1-13664</div>
</div>
This thesis focuses on two NP-hard network design problems:<br />the first one, vertex biconnectivity augmentation (V2AUG), appears in the design of survivable communication or electricity networks. In this problem we search for the set of connections of minimal total cost which, when added to the existing network, makes it survivable against failures of any single node. The second problem, the prize-collecting Steiner tree problem (PCST), describes a natural trade-off between maximizing the sum of profits over all selected customers and minimizing the implementation costs, e.g.<br />when designing a fiber optic or a district heating network.<br />We provide exact algorithms based on the branch-and-cut technique that can solve given network design problems of respectable size to provable optimality. For fairly large instances, we propose heuristic tools that obtain suboptimal, high quality solutions of practical relevance. Fractional bounds obtained by means of exact methods are therefore used as a measure of quality of obtained heuristic solution.<br />As a heuristic tool, we choose memetic algorithms (MAs), a symbiosis of evolutionary and neighborhood search algorithms. Our memetic algorithms comprise new representation techniques, search operators,constraint handling techniques and local-improvement strategies. Our exact algorithms are based on the state-of-the-art in polyhedral combinatorics. They rely on sophisticated separation algorithms or advanced column generation methods.<br />In this thesis, we also investigate some possibilities of combining promising variants of exact algorithms and MAs, e.g. incorporating exact algorithms that solve some special cases within MAs, or guiding column generation using MA results. In extensive computational studies our exact and memetic algorithms show their superiority compared to the previously published results. For many of V2AUG and PCST instances, we are the first to find provably optimalsolutions.<br />
de
dc.description.abstract
Abstract nicht verfügbar
en
dc.language
English
-
dc.language.iso
en
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
Kombinatorische Optimierung
de
dc.subject
NP-hartes Problem
de
dc.subject
Netzwerk
de
dc.subject
Algorithmus
de
dc.subject
Steiner-Problem
de
dc.title
Exact and memetic algorithms for two network design problems
en
dc.type
Thesis
en
dc.type
Hochschulschrift
de
dc.rights.license
In Copyright
en
dc.rights.license
Urheberrechtsschutz
de
dc.contributor.affiliation
TU Wien, Österreich
-
dc.rights.holder
Ivana Ljubić
-
tuw.version
vor
-
tuw.thesisinformation
Technische Universität Wien
-
dc.contributor.assistant
Pferschy, Ulrich
-
tuw.publication.orgunit
E186 - Institut für Computergraphik und Algorithmen
-
dc.type.qualificationlevel
Doctoral
-
dc.identifier.libraryid
AC04351739
-
dc.description.numberOfPages
177
-
dc.identifier.urn
urn:nbn:at:at-ubtuw:1-13664
-
dc.thesistype
Dissertation
de
dc.thesistype
Dissertation
en
dc.rights.identifier
In Copyright
en
dc.rights.identifier
Urheberrechtsschutz
de
tuw.advisor.staffStatus
external
-
tuw.assistant.staffStatus
staff
-
item.mimetype
application/pdf
-
item.grantfulltext
open
-
item.languageiso639-1
en
-
item.fulltext
with Fulltext
-
item.cerifentitytype
Publications
-
item.openaccessfulltext
Open Access
-
item.openairetype
doctoral thesis
-
item.openairecristype
http://purl.org/coar/resource_type/c_db06
-
crisitem.author.dept
E186 - Institut für Computergraphik und Algorithmen