Title: Estimation of large covariance matrices using results on large deviations
Language: English
Authors: Tulic, Mirsad 
Qualification level: Diploma
Keywords: große Kovarianzmatrizen; große Abweichungen; Kumulanten; Momentenproblem; Summe abhängiger Zufallsvariablen; Banding Operator; Mischfunktionen
large covariance matrices; large deviations; cumulants; sum of dependent random variables; banding operator; moment problem; mixing functions
Advisor: Deistler, Manfred
Issue Date: 2010
Number of Pages: 58
Qualification level: Diploma
Abstract: 
It appears that the general theory of large deviations has become an important part of probability theory, especially in the field of finance and insurance mathematics.
We have successfully used the theory of large deviations to show how regularized estimator of large covariance matrices converge to the population covariance matrix of multivariate normal i.i.d. stochastic processes, if the matrices are well-conditioned as long as long as log(p)/n tends to zero (p is the dimension of the random variable, n the size of the sample).
Based on an article of Bickel and Levina, we have not managed to establish a convergence result using theorems for large deviations from a book of Saulis and Statulevicius for stationary processes and we leave this question unanswered. My contribution to the topic is on the one hand to identify some flaws of the mentioned article and on the other to give an indication how the results could eventually be generalized to stationary processes instead of only assuming an identically and independently distributed Gaussian process. Since, we have showed that the banded estimator converges to the population covariance matrix and the Cholesky factor converges to the inverse of the population covariance matrix under certain conditions, no one should use the sample covariance matrix anymore in the case of p >n. The just mentioned results can bring a significant improvement in the finance industry, where it is necessary to have a reliable estimator of the population covariance matrix, especially in the field of portfolio optimization, where most often the number of assets is much larger than the number of observations.
URI: https://resolver.obvsg.at/urn:nbn:at:at-ubtuw:1-32172
http://hdl.handle.net/20.500.12708/10574
Library ID: AC07807743
Organisation: E105 - Institut für Wirtschaftsmathematik 
Publication Type: Thesis
Hochschulschrift
Appears in Collections:Thesis

Files in this item:

Show full item record

Page view(s)

10
checked on Feb 18, 2021

Download(s)

53
checked on Feb 18, 2021

Google ScholarTM

Check


Items in reposiTUm are protected by copyright, with all rights reserved, unless otherwise indicated.